independIT Integrative Technologies GmbH
Bergstrafie 6
D-86529 Schrobenhausen

BICsuite Server

Command Reference
Release 2.11

Dieter Stubler Ronald Jeninga

January 2, 2024

Copyright © 2024 independIT GmbH

Legal notice

This work is copyright protected

Copyright © 2024 independIT Integrative Technologies GmbH

All rights reserved. No part of this work may be reproduced or transmitted
in any form or by any means, electronically or mechanically, including photo-
copying, recording, or by any information storage or retrieval system, without
the prior written permission of the copyright owner.

Contents

Table of Contents

List of Tables

l. General

1. Introduction
Introduction e

2. Utilities

Starting and stopping theserver.

server-start L e

Server-stop
sdmsh e
sdms-auto_restart
sdms-get_variable oo L
SAMS-TEIUN v i e e e e e e e e e
sdms-set_state
sdms-set_variable
sdms-set_warning L L
sdms-submit

Il. User Commands

3. alter commands
altercomment
alter distribution
alterenvironment
alterevent
alter exitstatemapping Lo
alter exitstateprofile o o L
alter exit state translation
alter folder e
alter footprint
altergroup

11

15

17
17

25
25
25
26
27
36
38
40
42
44
46
48

51

53
54
56
57
58
59
60
62
63
65
67

alterinterval 68

alterjob L 70
alterjob definition Lo L Lo oo 75
alternamed resource e 81
alterniceprofile L o 83
alter objectmonitor L o L oo 85
alterpool 87
alterresource e 89
alter resource statemapping L Lo 91
alter resource state profile L L oL 92
alterschedule 93
alter scheduledevent 95
alterscope 96
alterserver e e 99
altersession e e e 101
altertrigger. L 103
alteruser e 105
alterwatchtype 107
. approve commands 109
APPIOVE . o v o e e 110
. cleanup commands 111
cleanupfolder L 112
. connect commands 115
CONNECt o e e e e e e e e 116
. copy commands 119
copy distributiono oo o o 120
copyfolder L 121
copynamed resourceo 122
COPY SCOPE v v v v vt e e it e e e e e 123
. create commands 125
createcomment e e e e e e e e 126
create distribution e 128
create environmento e e e e e 130
createevent L. e e e 131
create exit state definition L 132
create exitstatemapping oo oo 133
create exit state profile o L oo L 134
create exit state translation L. 137

create folder 138

create footprint Lo L L
creategroup
createinterval
createjob definition L oL oo
create NAaMed reSOUICE v v v v v e e e e e e e e e e e e
createniceprofile L L L L
create objectmonitor Lo
createpool
createresource L. L L oL L e e e
create resource state definition L.
create resource statemapping Lo
create resource state profile o o L oo
createscheduleo
create scheduled event
createscopeo
createtrigger
create uUser L e e e e e e e e e e e e
createwatchtype L

9. deregister commands
deregister

10.disconnect commands
disconnect s

11.drop commands
dropcomment
drop distribution oo o
dropenvironment L Lo oL
dropevent
drop exit state definition o oo oL
drop exit statemapping
drop exitstateprofile L oo
drop exit state translation o o0 0oL
dropfolder
drop footprint
dropgroup
dropinterval
drop job definition Lo oL o
dropnamedresource L
dropniceprofile
drop objectmonitor L
droppool
dropresource

213
214

215
216
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

drop resource state definition o oo
drop resource statemapping L Lo
drop resource state profile o o L 0oL
dropschedule
drop scheduledevent o oo L
dropscope
droptrigger
dropuser
dropwatchtype L

12.dump commands
dump

13.finish commands
finishjob

14.get commands
getparameter L o
getsubmittag Lo

15.grant commands
grant

16.kill commands
Kill session o e

17.link commands
LHnk resource e,

18.list commands
listapproval
listcalendar
list dependency definition Lo L L oL
list dependency hierarchy
listenvironment
listevent e
list exit state definitiono
list exit statemapping L L L Lo
listexitstateprofile L o oo
list exit state translation
Listfolder e
listfootprint
listgrant
listgroup

257
258

259
260
261

263
264

271
272

19.

20.

21.

22,

listinterval e
listjob
list job definition hierarchy
listnamed resource e
listniceprofile L
listobject monitor L L Lo
listpool
list resource state definition
list resource statemappingo Lo Lo Lo
list resource state profile L Lo L oo
listschedule e
listscheduled
listscheduledevent,
listscope
LSt Session i i e e e e
listtrigger
Listuser e e e e
listwatchtype

move commands

move folder
movejob definition Lo L L oo
move NAMed FeSOUTCE v v v v e e e e e e e e e
movepool
moveschedule
MOVE SCOPE . « v v v o v e e et et et e e e

multicommand commands
multicommand e

register commands
register

rename commands

rename distribution L
rename environment L. Lo e e e
renameevent. Lo e e e e e e e e e e
rename exit state definition Lo L.
rename exitstatemapping oL oL Lo L
rename exit state profileo oo oL
rename exit state translation L L L.
rename folder e
rename footprint. L Lo L Lo
TENAME IOUP . « .« v v v v v v e et e e e e e

343
344
345
346
347
348
349

351
352

353
354

rename interval e 366

rename job definition Lo o oL L oo 367
rename named TeSOUTICE v v v v v i i e e e 368
renamenice profile Lo L L L o 369
rename object monitor L L Lo L oo 370
rename resource state definition oL, 371
rename resource state mapping 372
rename resource state profile o oo oo 373
renameschedule. 374
FENAIME SCOPE .+ .« & v v v o v v e et e e e e 375
renametrigger 376
TENAME USET . . v v v v v e e e e e e e e e e e e e e e e e 377
rename watchtype oL 378
23.resume commands 379
TESUIME . . . o o i e 380
24.revoke commands 381
TEVOKE . . e e 382
25.select commands 385
select e e 386
26.set commands 387
setparameter 388
27.show commands 389
showcomment 390
show distribution e 393
show environment e 395
showevent e 398
show exit state definition 400
show exitstatemapping L. 401
show exitstateprofile L 0oL 403
show exit state translation 405
show folder 407
show footprint L L 409
showgroup 412
show interval 414
showjob 420
show job definition o oo L 439
shownamed resource e 452
showniceprofile L o 456
show objectmonitor L oL 458

showpool
show resource e
show resource state definition
show resource statemapping L
show resource state profile 0 L.
showschedule
show scheduled event
showscope
show session
showsystem L
show trigger
show user e
show watchtype 0 .

28.shutdown commands
shutdown e,

29.stop commands
stopserver

30.submit commands
submit e,

31.suspend commands
suspend

lll. Jobserver Commands

32.Jobserver Commands
alterjob
alterjobserver L
CONNECE e e e e e e e e e e e e e e
deregister
disconnect e e
getnextjob
multicommand
TEASSUIE . . & v v v e o v e e e e e e e e e e e e e e
register

IV. Job Commands

33.Job Commands
alterjob

515

517
518
523
524
527
528
529
531
532
533

alter object monitor Lo Lo oo 543

connecto e e e 544
disconnect 547
getparameter 548
getsubmittag L o 549
listobjectmonitor L o 550
multicommand 551
setparameter 552
setstate L L 553
show object monitoro o0 oL 554
submit e e 559
V. Programming Examples 563
Programming Examples 565
34.Programming examples 565

10

List of Tables

1.1.
1.2.
1.3.
1.4.

8.1.
8.2.
8.3.
8.4.
8.5.

12.1.
12.2.
12.3.

14.1.
14.2.

18.1.
18.2.
18.3.
18.4.
18.5.
18.6.
18.7.
18.8.
18.9.

18.10.
18.11.
18.12.
18.13.
18.14.
18.15.
18.16.
18.17.
18.18.
18.19.

Valid date formatso L L. 20
Keywords that can be used with quotes as identifiers 21
Keywordsund synonyms 22
Reservedwords 23
job definition parameters, 162
Named Resource parameter types 173
Named Resourceusage 174
job definition parameters 185
Listof triggertypes. L L L. 206
Dump objecttypes L oo 250
Dump expand operators L L. 252
dumpoutput 254
get parameteroutput. oo oo L 260
get submittagoutput oo oo oo 261
listapprovaloutput L. 277
list calendaroutput o Lo 279
list dependency definitionoutput 281
list dependency hierarchy output 286
list environmentoutput o Lo oL 287
listeventoutput 288
list exit state definitionoutput 289
list exit state mappingoutput Lo 0oL 290
list exit state profileoutput L. 291
list exit state translationoutput 0000 292
list folderoutput L Lo oo 296
list footprintoutput o L L oo 297
Abbreviations for privileges oo oL 300
listgroupoutput o 301
listintervaloutput o o L. 303
listjoboutput L o 310
list job definition hierarchy output 314
list named resourceoutput L L L 317
list nice profileoutputo Lo oo L 318

11

12

18.20.
18.21.
18.22.
18.23.
18.24.
18.25.
18.26.
18.27.
18.28.
18.29.
18.30.
18.31.
18.32.

27.1.
27.2.
27.3.
27 4.
27.5.
27.6.
27.7.
27.8.
27.9.

27.10.
27.11.
27.12.
27.13.
27.14.
27.15.
27.16.
27.17.
27.18.
27.19.
27.20.
27.21.
27.22.
27.23.
27.24.
27.25.
27.26.
27.27.
27.28.
27.29.

list object monitoroutput Lo oL oo oL 319

listpooloutput oL 321
list resource state definitionoutput. 322
list resource state mapping output L. 323
list resource state profileoutput 000 324
list scheduleoutput 326
list scheduledoutput 328
list scheduled eventoutput, 330
listscopeoutput L 332
list sessionoutput L L 334
list triggeroutput oo 338
listuseroutput o o 340
list watch typeoutput 0L 341
show commentoutput 392
show distributionoutput 0L, 394
show distribution RESOURCES subtable structure 394
show environmentoutput 396
show environment RESOURCES subtable structure 396
show environment JOB_DEFINITIONS subtable structure 397
showeventoutput L. 399
show event PARAMETERS subtable structure 399
show exit state definitionoutput 400
show exit state mapping output 401
show exit state mapping RANGES subtable structure 402
show exit state profileoutput 404
show exit state profile STATES subtable structure 404
show exit state translation output 405
show exit state translation TRANSLATION subtable structure . . . 406
show folderoutput 408
show footprintoutput 000 410
show footprint RESOURCES subtable structure 410
show footprint JOB_DEFINITIONS subtable structure 411
show groupoutput oL 412
show group MANAGE_PRIVS subtable structure 413
show group USERS subtable structure 413
show intervaloutput 416
show interval SELECTION subtable structure 416
show interval FILTER subtable structure 416
show interval DISPATCHER subtable structure 417
show interval HIERARCHY subtable structure 418
show interval REFERENCES subtable structure 419
show interval EDGES subtable structure 419

27.30.
27.31.
27.32.
27.33.
27.34.
27.35.
27.36.
27.37.
27.38.
27.39.
27.40.
27.41.
27.42.
27.43.
27.44.
27.45.
27.46.
27.47.
27.48.
27.49.
27.50.
27.51.
27.52.
27.53.
27.54.
27.55.
27.56.
27.57.
27.58.
27.59.
27.60.
27.61.
27.62.
27.63.
27.64.
27.65.
27.66.
27.67.
27.68.
27.69.
27.70.
27.71.
27.72.

showjoboutput
show job CHILDREN subtable structure
show job PARENTS subtable structure
show job PARAMETER subtable structure
show job REQUIRED_JOBS subtable structure
show job DEPENDENT_JOBS subtable structure.
show job REQUIRED_RESOURCES subtable structure
show job AUDIT_TRAIL subtable structure
show job DEFINED_RESOURCES subtable structure
show job RUNS subtable structure
show job definitionoutput
show job definition CHILDREN subtable structure
show job definition PARENTS subtable structure
show job definition REQUIRED_JOBS subtable structure
show job definition DEPENDENT_JOBS subtable structure .
show job definition REQUIRED_RESOURCES subtable structure .
show named resourceoutput
show named resource RESOURCES subtable structure
show named resource PARAMETERS subtable structure
show named resource JOB_DEFINITIONS subtable structure

show nice profileoutput 000,
show nice profile ENTRIES subtable structure
show object monitoroutput L.
show object monitor PARAMETERS subtable structure
show object monitor INSTANCES subtable structure
show pooloutput. Lo L.
show pool RESOURCES subtable structure
show pool DISTRIBUTION_NAMES subtable structure
show pool DISTRIBUTIONS subtable structure
show resourceoutput L L L.
show resource ALLOCATIONS subtable structure
show resource PARAMETERS subtable structure
show resource state definitionoutput
show resource state mappingoutput.
show resource state mapping MAPPINGS subtable structure

show resource state profileoutput
show resource state profile STATES subtable structure
show scheduleoutput
show scheduled eventoutput
show scopeoutput o L.
show scope RESOURCES subtable structure
show scope CONFIG subtable structure
show scope CONFIG_ENVMAPPING subtable structure

13

14

27.73.
27.74.
27.75.
27.76.
27.77.
27.78.
27.79.
27.80.
27.81.
27.82.
27.83.
27.84.
27.85.
27.86.

30.1.
32.1.

33.1.
33.2.
33.3.
33.4.
33.5.
33.6.
33.7.

show scope PARAMETERS subtable structure 489
show sessionoutput oL 491
show systemoutput 493
show system WORKER subtable structure 494
show triggeroutput L. 497
show trigger STATES subtable structure 498
show trigger PARAMETERS subtable structure 498
showuseroutput 0 0 L. 500
show user MANAGE_PRIVS subtable structure 500
show user GROUPS subtable structure 501
show user EQUIVALENT_USERS subtable structure 501
show user COMMENT subtable structure 501
show watch typeoutput 502
show watch type PARAMETERS subtable structure 503
submitoutput Lo L oo 512
getnextjoboutput L oo Lo 530
get parameteroutput. oo 000000000 548
getsubmittagoutput L o L 0oL L 549
list object monitor output L oo 550
show object monitoroutput o0 0oL 555
show object monitor PARAMETERS subtable structure 555
show object monitor INSTANCES subtable structure 558
submitoutputo Lo oo 561

Part I.

General

15

1. Introduction

Introduction

Essentially, this document is divided into three parts. In the BICsuite Scheduling
System, there are three types of users (in the broadest sense of the word):

e Users
e Jobservers

¢ Jobs

Each of these users has his own command set at his disposal. These command sets
only overlap to a certain extent. For example, for jobservers there is the statement
get next job, which is not valid for either jobs or users. On the other hand, there
are forms of the submit statement will only make sense in a job context and which
can therefore only be implemented by jobs. Obviously only users are allowed to
create objects such as Exit State definitions or job definitions. In contrast, there are
also statements such as the connect statement which is valid for all types of users.

The structure of this document is oriented to the three types of users. The largest
part of this document deals with the user commands, while the two other parts
handle jobservers and job commands.

For the sake of completeness, the next chapter briefly explains the utility sdmsh.
This utility is easy to use and is an excellent choice for processing scripts using
BICsuite commands.

Since the syntax described here is the only interface to the BICsuite Scheduling
Server, all the utilities (and in particular BICsuite!Web) use this web interface.

To simplify the development of proprietary utilities, the server is capable of return-
ing its reactions to statements in various formats. The utility sdmsh, for example,
uses the serial protocol, with which serialised Java objects are transferred. In con-
trast BICsuite!Web uses the python protocol, with which textual representations of
Python structures are transferred that can be easily read in using the eval() func-
tion.

17

Syntax diagrams

Syntax diagrams The syntax diagrams are comprised of different symbols and metasymbols. The
symbols and metasymbols are listed and explained in the table below.

Symbol Meaning

keyword A keyword in the language. These have to be entered
as shown. One example is the keyword create.

name A parameter. In many cases, the user can choose a
name or a number to be entered here.

NONTERM A non-terminal symbol is represented by SMALL CAPS.

A syntax element that is explained further on in the
diagram has to be inserted here.

< all | any > This syntax element is an optional choice. One of the
syntax elements given in the angle brackets, which can
obviously also be non-terminal symbols, has to be se-
lected. In the simplest scenario there are only two
choices that can be made here, although frequently
there are more.

< all | any > This is also an optional choice. Unlike the previous
syntax element, the underscore of the first element em-
phasises that this option is the default choice.

[or alter | Optional syntax elements are placed in square brack-
ets.

{ statename } Syntax elements that are placed in braces are repeated
0 to n times.

JOB_PARAMETER Cases where elements occur at least once are far more

{, JOB_PARAMETER} common and are shown as represented here.

| In lists of possible syntax elements, the single possibil-
ities are separated by a |. Such a list is another way of
displaying optional choices. These two different forms
of presentation are used for purposes of clarity.

18

Literals

Literals are only required in the language definition for strings, numbers, and
dates/times.
Strings are delimited by single quotes, as in

node = "puma.independit.de”

Integers are shown as either unsigned integer or signed signed_integer

in the syntax diagrams. A signed_integer can be prefixed with a + or - sign. Valid
unsigned integers lie in the range of numbers between 0 and 23! —1. Signed integers
are therefore within the range between —23! + 1 and 23! — 1. If the syntax diagram
contains id, an unsigned integer between 0 and 2% — 1 is expected here.

Much more complicated are dates/times, particularly in statements concerning the
time scheduling. These literals are principally shown as strings with a special for-
mat.

The following syntax is used to comply with the notations based on ISO8601 as
given in Table 1.1 :

String Meaning Range String Meaning Range

YYYY year 1970 .. 9999 hh hour 00..23
MM month 01..12 mm minute 00.. 59
DD day (of the month) 01 .. 31 ss second 00 ..59

ww week (of the year) 01 .. 53

¢ All other strings stand by themselves.
¢ No differentiation is made between uppercase and lowercase.

¢ The earliest permissible point in time is 1970-01-01T00:00:00 GMT.

Format Example Simplified Format
YYYY 1990

YYYY-MM 1990—-05 YYYYMM
YYYY-MM-DD 1990—-05—-02 YYYYMMDD
YYYY-MM-DDThh 1990—05—-02T07 YYYYMMDDThh

YYYY—-MM-DDThh:mm 1990—-05—-02T07:55 YYYYMMDDThhmm
YYYY-MM-DDThh:mm:ss 1990—05—02T07:55:12 | YYYYMMDDThhmmss

—MM —05

—MM-DD —05-02 —MMDD
—MM-DDThh —05—-02T07 —MMDDThh
—MM-DDThh:mm —05—-02T07:55 —MMDDThhmm

Continued on next page

19

Literals

Identifier

Continued from previous page
Format Example Simplified Format
—MM-DDThh:mm:ss —05—02T07:55:12 —MMDDThhmmss
——DD ——02
——DDThh ——02T07
——DDThh:mm ——02T07:55 ——DDThhmm
——DDThh:mm:ss ——02T07:55:12 ——DDThhmmss
Thh T07
Thh:mm T07:55 Thhmm
Thh:mm:ss T07:55:12 Thhmmss
T—mm T-55
T—mm:ss T-55:12 T—mmss
T——ss T—-12
YYYYWww 1990W18
Www W18
Table 1.1.: Valid date formats
Identifier

In the BICsuite Scheduling System, objects are identified by their names. (Strictly
speaking, objects can also be identified from their internal Id, which is a number,
but this practice is not recommended). Valid names comprise a letter, underscore
(L), at sign (@) or hash sign (#) followed by numbers, letters or special characters.
Language-specific special characters such as the German umlaut are invalid.

Identifiers are treated as being case-insensitive if they are not enclosed in simple
quotes. Identifiers enclosed in quotes are case-sensitive. It is therefore not gener-
ally recommended to use quotes unless there is a valid reason for doing so.

Identifiers that are allowed to be enclosed in single quotes can also contain spaces
and several special characters. Again, this practice is not recommended as spaces
are normally interpreted as delimiters and therefore errors can easily occur. Spaces
aren’t allowed at the beginning or end of an identifier.

There are a number of keywords in the syntax that cannot be readily used as iden-

tifiers. Here it may be practicable to use quotes so that the identifiers are not recog-
nised as keywords. Table 1.2 contains a list of such keywords.

20

activate
active
action
add

after

alter
amount
and

avg

base
batch
before
broken
by

cancel
cancelled
cascade
change
check
child
children
childsuspend
childtag
clear
command
comment
condition
connect
constant
content
copy
count
create
cycle

day
default
definition
defer

delay
delete
dependency
deregister
dir

disable
disconnect
distribution
drop

dump
duration
dynamic
edit
embedded
enable
endtime
environment
errlog

error

event
execute
expand
expired
factor
failure

fatal

filter

final

finish
finished
folder
footprint
for

force
free_amount
from

get

grant

group
header

history
hour
identified
ignore
immediate
import

in
inactive
infinite
interval
inverse

is

isx

ix

job

kill

killed
level
liberal
like
limits
line

list

local
lockmode
logfile
loops
map
maps
mapping
master
master_id
max

min
merge
merged

milestone
minute
mode
month
move
multiplier
n

name
nicevalue
node
noinverse
nomaster
nomerge
nonfatal
nosuspend
notrace
notrunc
nowarn
of

offline

on

online
only

or

owner
parameters
password
path
pending
performance
perl

pid

pool
priority
profile
protocol
public
python

rawpassword
read
reassure
recursive
register
rename
required
requestable
rerun
restartable
restrict
resume
revoke
rollback
run
runnable
running
runtime

S

sc
schedule
scope
selection
serial
server
session
set
shutdown
show

sort
started
starting
starttime
static
status
stop

strict
submit

submitcount
submittag
submitted
sum
suspend

sX
synchronizing
synctime
tag

test

time
timeout
timestamp
to

touch

trace
translation
tree

trigger
trunc

type
update
unreachable
unresolved
usage

use

user

view

warn
warning
week

with
workdir

X

xml

year

Table 1.2.: Keywords that can be used with quotes as identifiers

21

There are also a number of synonyms. These are essentially keywords that can
be written in more than one way. Only one spelling variation is shown in Table
1.2. The synonyms can be used together arbitrarily. Table 1.3 gives a list of such

synonyms.

Keyword Synonym Keyword | Synonym
definition definitions minute minutes
dependency | dependencies || month months
environment | environments || node nodes
errlog errlogfile parameter | parameters
event events profile profiles
folder folders resource resources
footprint footprints schedule schedules
grant grants scope scopes
group groups server servers
hour hours session sessions
infinit infinite state states, status
interval intervals translation | translations
job jobs user users
mapping mappings week weeks
milestone milestones year years

Table 1.3.: Keywords und synonyms

As in any language, there are also some reserved words and word combinations.
An overview is shown in Table 1.4. A special characteristic of word pairs is that
replacing a space with an underscore likewise produces a reserved word. The word

named_resource is therefore reserved (but “named#resource” isn’t).

22

after final

all final

backlog handling
before final

begin multicommand
broken active

broken finished
change state

default mapping
dependency definition
dependency hierarchy
dependency mode
dependency wait

end multicommand

exit state translation
ext pid

finish child

free amount

get next job

ignore dependency
immediate local
immediate merge
initial state

job definition

job definition hierarchy
job final

job server

job state

non fatal

requestable amount
resource state

resource state definition
resource state mapping
resource state profile
resource template
resource wait

run program

rerun program
scheduled event

state profile

status mapping
suspend limit

Continued on next page

Continued from previous page

error text

exec pid

exit code

exit state

exit state mapping
exit state definition

keep final
kill program
local constant
merge mode
merge global
merge local

submitting user
synchronize wait
to kill

until final

until finished

named resource

exit state profile

Table 1.4.: Reserved words

Editions

There are three editions of the BICsuite Scheduling System. Since features from
later editions are not always present in the earlier editions, the relevant statements
or options within the statements are designated accordingly. A letter in the top cor-
ner of the page indicates for which edition of the system this statement is available.
Deviations from the general statement are shown in the syntax diagram.

The symbols have the following meanings:

Symbol Meaning
ﬂ This symbol indicates a feature in the Basic version and all later ver-
sions.
This symbol indicates a feature in the Professional and Enterprise ver-
sions and all later versions.
This symbol indicates a feature in the Enterprise version.

23

Editions

2. Utilities

Starting and stopping the server

server-start
Introduction

The utility server-start is used to start the scheduling server.

Call

The following commands are used to call server-start:

server-start [OPTIONS | config-file
OPTIONS:
-admin

| -protected

The individual options have the following meanings:

Option Meaning

V44

-admin The server starts in “admin” mode. This
means that user logins are disabled apart from
the user SYSTEM.

-protected "’-protected mode is similar to Admin mode.
The difference here is that the internal threads
(TimerThread and SchedulingThread) are not
started. This allows administrative tasks to be
carried out without concurrent transactions be-
ing performed.

If the server has already been started, the second server either (depending on the
configuration) takes over the operation or repeatedly makes an unsuccessful at-
tempt to start.

The server-start utility can be only be used by the user whose Id was used to install
the system.

25

Introduction

Call

Introduction

Call

server-stop
Introduction

The server-stop utility is used to stop the scheduling server.

Call

The following command is used to call server-stop:

server-stop

Initially, an attempt is made to stop the server ‘gracefully’. First, all the user con-
nections are terminated to stop all the internal threads.

If this approach fails or it takes too long, the server is stopped using the operating
system’s mechanisms.

If the server has not been started, the server-stop command has no effect.

The server-stop utility can be only be used by the user whose Id was used to install
the system.

26

sdmsh

Introduction

The sdmsh utility is a small program that enables the user to interactively work
with the scheduling server. In contrast to the BICsuite!Web front end, for instance,
this working method is text-oriented. This means it is possible to write scripts and
execute them using sdmsh.
The sdmsh executable is a small script (or batch file) that encapsulates the call of the
required Java program. Of course, there is no reason why this Java program should

not be called manually. It is only there for convenience’s sake.

Call

The following commands are used to call sdmsh:

sdmsh [OPTIONS | [username | password [host | port]]] |

OPTIONS:

The individual options have the following meanings:

< --host | -h > hostname

< --port | -p > portnumber
< --user | -u > username
< --pass | -w > password
< --jid | -j > jobid

< --key | -k > jobkey

< --[no |silent | -[no |s >
< --[no |verbose | -[no |v >
< --ini | -ini > inifile

< --[no Jtls | -[no |tls >

--[no |help

--info sessioninfo

-[no]S

--timeout timeout

27

Introduction

Call

Options file

Option Meaning
< --host | -h > hostname BICsuite Server Host
< --port | -p > portnumber BICsuite Server port

< --user | -u > username
< --pass | -w > password

< --jid | -j > jobid
< --key | -k > jobkey

< --|no |silent | -[no |s >
< --[no |verbose | -[no |v >

< --ini | -ini > inifile

< --[no Jtls | -[no |tls >
--[no |help

--info sessioninfo

-[no S

--timeout timeout

User name (user or jid has to be specified)
Password (is used in combination with the op-
tion --user)

Job Id (user or jid has to be specified)

Job key (is used in combination with the option
~jid)

[No | (error) Messages are not returned

[No | Commands, feedback and additional
messages are returned

Use the specified configuration file to set op-
tions

Use access via TLS/SSL [not |

Return a help text

Set the accompanying information as descrip-
tive information about the session

Silent option. This option is obsolete and exists
for reasons of backward compatibility

The number of seconds after which the server
terminates an idle session. The value 0 means
no timeout

sdmsh obviously requires information to connect to the correct BICsuite Scheduling
System. The necessary data can be specified in the command line or by using an
options file. Missing values for the user name and password are queried by sdmsh.
If values for the host and port are not given, the defaults values “localhost” and
2506 are used. It is not advisable to specify the password in the command line
because this information can frequently be easily read out by other users.

Options file

The options file has the same format as a Java property file. (Please refer to the
official Java documentation for details of the precise syntax specification.)
The following option files play a role:

e $SDMSCONFIG/sdmshrc
® SHOME/.sdmshrc

¢ Optionally, a file specified in the command line

28

The files are valuated in the given order. If options are present in several files, the
value in the last valuated file “wins”. Options that are specified in the command
line take precedence over all the other specifications.

The following keywords are recognised:

Keyword Meaning

User The user’s name

Password The user’s password

Host Name or IP address of the host

Info Additional information for identifying a connection is set
Port Port number of the scheduling server (default: 2506)
Silent (Error) messages are not returned

Timeout Timeout value for the session (0 means no timeout)

TLS Use an SSL/TLS connection

Verbose Commands, feedback and additional messages are returned
Since the user’s password is shown in plain text in this file, careful consideration
needs to be taken when assigning the access privileges for this file. It is, of course,

possible to not specify the password and to enter it every time sdmsh is started.

Only the following keywords can be used in configuration files:

Keyword Meaning
KeyStore Keystore for TLS/SSL communication
TrustStore Truststore for TLS/SSL communication

KeyStorePassword Keystore password
TrustStorePassword Truststore password

Internal commands

Apart from the BICsuite commands described in the following chapters, sdmsh
also knows a few simple commands of its own. These are briefly described below.
Internal commands do not have to be closed with a semicolon.

disconnect The disconnect command is used to exit sdmsh. Because different
commands are commonly used to exit a tool in different work environments, an
attempt was made here to incorporate many varying formulations.
The syntax for the disconnect command is:

29

Internal
commands

< disconnect | bye | exit | quit >

EXAMPLE Here is an example of the disconnect command.

ronald@jaguarundi:~$ sdmsh
Connect

CONNECT_TIME : 23 Aug 2007 07:13:30 GMT
Connected

[system@localhost:2506] SDMS> disconnect
ronald@jaguarundi:~$

echo If sdmsh is being used interactively, it is visually evident which command
has just been entered. This is not the case in batch mode, i.e. when processing a
script. The echo command can be used to enable and disable the rendering of the
entered statement. This is enabled by default.
The syntax for the echo command is:

echo < on | off >

EXAMPLE The effect of these two options is shown below. Following the command
echo on

[system@localhost:2506] SDMS> echo on
End of Output

[system@localhost:2506] SDMS> show session;
show session;

Session

THIS : *
SESSIONID : 1001
START : Tue Aug 23 11:47:34 GMT+01:00 2007
USER : SYSTEM
UID : O
IP : 127.0.0.1
TXID : 136448
IDLE : O
TIMEOUT : O
STATEMENT : show session

Session shown

[system@localhost:2506] SDMS> echo off

30

End of Output
[system@localhost:2506] SDMS> show session;
Session

THIS : *
SESSIONID : 1001
START : Tue Aug 23 11:47:34 GMT+01:00 2007
USER : SYSTEM
UID : O
IP : 127.0.0.1
TXID : 136457
IDLE : O
TIMEOUT : O

STATEMENT show session

Session shown

[system@localhost:2506] SDMS>

help The help command opens a condensed help text about the internal sdmsh
commands.
The syntax for the help command is:

help

EXAMPLE The help command only returns a condensed help text about the syntax
for the internal sdmsh commands. This is shown in the example below. (The lines
have been wrapped for this document and so the actual output may differ to what
is written here).

[system@localhost:2506] SDMS> help
Condensed Help Feature

Internal sdmsh Commands:

disconnect |bye|exit|quit —— leaves the tool

echo on|off

help
include '<filespec>'

prompt '<somestring>'

timing on|off

whenever error
continue|disconnect <integer>

controls whether the statement text is
printed or not

gives this output

reads sdms (h) commands from the given
file

sets to prompt to the specified value
hostname, %P = port, %U = user,

jan}
I

= 2
= 3

controls whether the actual time is
printed or not

o° o
o\

specifies the behaviour of the program

31

in case of an error

!<shellcommand> —— executes the specified command. sdmsh
has no intelligence
at all regarding terminal I/O

End of Output
[system@localhost:2506] SDMS>

include Files can be integrated into BICsuite statements using the include com-
mand.
The syntax for the include command is:

include ‘filespec’

EXAMPLE In the following example, a file only containing the command “show
session;” is inserted.

[system@localhost:2506] SDMS> include '/tmp/show.sdms'
Session

THIS : *
SESSIONID : 1001
START : Tue Aug 23 11:47:34 GMT+01:00 2007
USER : SYSTEM
UID : O
IP : 127.0.0.1
TXID : 136493
IDLE : O
TIMEOUT : O
STATEMENT : show session

Session shown

[system@localhost:2506] SDMS>

prompt The prompt command can be used to specify an arbitrary prompt. There
are a number of variable values that can be inserted automatically by the program.
The codes for the individual variables are shown in the table below:

Code Meaning

%H Hostname des Scheduling Servers
%P TCP/IP Port

%U Username

%% Percent character (%)

32

The default prompt has the following definition: [$UQ%H:%P] SDMS>.
The syntax for the prompt command is:

prompt "somestring’

EXAMPLE In the following example, an empty prompt is defined first. A BICsuite
statement is then executed to make the effect more clearly visible. A simple string
is then selected as a prompt, and finally the variables are used.

[system@localhost:2506] SDMS> prompt ''
End of Output

show session;
show session;

Session

THIS : *
SESSIONID : 1001
START : Tue Aug 23 11:47:34 GMT+01:00 2007
USER : SYSTEM
UID : O
IP : 127.0.0.1
TXID : 136532
IDLE : O
TIMEOUT : O
STATEMENT : show session

Session shown
prompt 'hello world '
End of Output

[o) Q Q

hello world prompt '[%UQ@%H:%P] please enter your wish! >
End of Output
[system@localhost:2506] please enter your wish! >

timing The timing command provides information about the execution time for
a statement. Normally, this option is disabled and so no information about the
execution time is given. The time is stated in milliseconds.
The syntax for the timing command is:

timing < off | on >

33

EXAMPLE The following example shows the timing information for a simple BIC-
suite statement. The execution time for the statements and the time that was re-
quired to output the result is shown.

[system@localhost:2506] SDMS> timing on
End of Output

[system@localhost:2506] SDMS> show session;
Execution Time: 63
show session;

Session

THIS : *
SESSIONID : 1002
START : Tue Aug 23 11:53:15 GMT+01:00 2007
USER : SYSTEM
UlD : O
IP : 127.0.0.1
TXID : 136559
IDLE : O
TIMEOUT : O
STATEMENT : show session

Session shown

[system@localhost:2506] SDMS>
Render Time : 143

whenever An error handling routine is absolutely essential particularly when
sdmsh is being used to execute scripts. The whenever statement tells sdmsh how
to deal with errors. By default errors are ignored, which also corresponds to the
desired behaviour for interactive working.
The syntax for the whenever command is:

whenever error < continue | disconnect integer >

EXAMPLE The example below shows the behaviour of both the continue option and
the disconnect option. The Exit Code for a process that was started by the Bourne
shell (and other Unix shells as well) can be shown by outputting the variable $72 .

[system@localhost:2506] SDMS> whenever error continue
End of Output

[system@localhost:2506] SDMS> show exit state definition does_not_exist;
show exit state definition does_not_exist;

ERROR:03201292040, DOES_NOT_EXIST not found

34

[system@localhost:2506] SDMS> whenever error disconnect 17
End of Output

[system@localhost:2506] SDMS> show exit state definition does_not_exist;
show exit state definition does_not_exist;

ERROR:03201292040, DOES_NOT_EXIST not found

[system@localhost:2506] SDMS>
ronald@jaguarundi:~$ echo $7?
17

ronald@jaguarundi:~$

Shell call It frequently happens that a shell command has to be quickly exe-
cuted, for instance to see what the file that is to be run (using include) is called. If
no special capabilities are required of the terminal, such as is the case when calling
an editor, a shell command can be executed by prefixing it with an exclamation
mark.

The syntax for a shell call is:

Ishellcommand

EXAMPLE In the following example, a short list of all the sdmsh scripts in the /tmp
directory is outputted.

[system@localhost:2506] SDMS> !l1s -1 /tmp/+*.sdms
-rw-r——r—— 1 ronald ronald 15 2007-08-23 09:30 /tmp/ls.sdms
End of Output

[system@localhost:2506] SDMS>

35

Introduction

Call

sdms-auto_restart

Introduction

The utility sdms-auto_restart is used to automatically restart jobs that have failed.
A number of simple conditions have to be met to do this. Probably the most impor-
tant condition is that the job defines a parameter AUTORESTART with the value
TRUE. This parameter can naturally also be set at a higher level.
The following parameters influence the behaviour of the AUTORESTART utilities:

Parameter Effect

AUTORESTART The autorestart only functions if this param-
eter is set to “"TRUE”

AUTORESTART_MAX Defines the maximum number of automatic
restarts if set

AUTORESTART_COUNT Is set by the aurorestart utility to count the
number of restarts

AUTORESTART_DELAY The time in minutes before a job is restarted

The AUTORESTART utility can be defined as a trigger. The trigger types IMMEDI-
ATE_LOCAL and FINISH_CHILD can be used.

The logic of the option files that applies for the sdmsh utility is also used for sdms-
auto_restart.

Call

The following commands are used to call sdms-auto_restart:

sdms-auto_restart [OPTIONS | < --host | -h > hostname
< --port | -p > portnumber < --user | -u > username
< --pass | -w > password < --failed | -f > jobid

OPTIONS:
< --silent | -s >
< --verbose | -v >
< --timeout | -t > minutes
< --cycle | -c > minutes
< --help | -h >
< --delay | -d > seconds
< --max | -m > number
< --warn | -W >

36

The individual options have the following meanings:

Option

Meaning

< --host | -h > hostname

< --port | -p > portnumber
< --user | -u > username
< --pass | -w > password
< --failed | -f > jobid

< --silent | -s >

< --verbose | -v >
< --timeout | -t > minutes
< --cycle | -c > minutes

< --help | -h >
< --delay | -d > minutes

< --max | -m > number
< --warn | -W >

Host name of the scheduling server
Port of the scheduling server

User name for the login

Password for the login

Job Id of the job that is to be restarted

Reduces the number of messages that are re-
turned

Increases the number of messages that are
returned

Number of minutes for attempting to get a
server connection

Number of minutes for the delay between
two attempts

Returns a condensed help

Number of minutes for the delay until the
job is restarted

Maximum number of automatic restarts
The warning flag is set when the maximum
number of restarts has been reached

37

sdms-get_variable

Introduction

Introduction The utility sdms-get_variable offers a simple way of reading out job parameters
from the scheduling system.
The logic of the option files that applies for the sdmsh utility is also used for sdms-
get_variable.

Call

Call The following commands are used to call sdmsh-get_variable:

sdms-get_variable [OPTIONS | < --host | -h > hostname
< --port | -p > portnumber < --jid | -j > jobid
< --name | -n > parametername

OPTIONS:
< --user | -u > username
< --pass | -w > password
< --key | -k > jobkey
< --silent | -s >
< --verbose | -v >
< --timeout | -t > minutes
< --cycle | -c > minutes
< --help | -h >
< --mode | -m > mode

The individual options have the following meanings:

Option Meaning

< --host | -h > hostname Host name of the scheduling server

< --port | -p > portnumber Port of the scheduling server

< --user | -u > username User name for the login

< --pass | -w > password Password for the login (for a connection as
user)

< --key | -k > jobkey for the login (for a connection as job)

< --silent | -s > Reduces the number of messages that are re-
turned

Continued on the next page

38

Continued from the previous page

Option Meaning
< --verbose | -v > Increases the number of messages that are
returned

< --timeout | -t > minutes Number of minutes for attempting to get a
server connection

< --cycle | -c > minutes Number of minutes for the delay between
two attempts to set up a server connection

< --help | -h > Returns a condensed help text about calling
the utility

< --mode | -m > mode Mode for determining the parameter (lib-

eral, warn, strict)

Example

The example below shows how to get the variable value of the variable RE- Example
SPONSE of job 5175119.

ronald@cheetah:~$ sdms—-get_variable —-h localhost -p 2506 \
-3 5175119 -u donald -w duck -n RESPONSE

39

sdms-rerun

Introduction

Introduction The utility sdms-rerun is used to rerun a job in a restartable state from a script or
program. The logic of the option files that applies for the sdmsh utility is also used
for sdms-rerun.

Call
Call The following commands are used to call sdms-rerun:

sdms-rerun [OPTIONS | < --host | -h > hostname
< --port | -p > portnumber < --jid | -j > jobid

OPTIONS:
< --user | -u > username
< --pass | -w > password
< --key | -k > jobkey
< --silent | -s >
< --verbose | -v >
< --timeout | -t > minutes
< --cycle | -c > minutes
< --help | -h >
< --suspend | -S >
< --delay | -D > delay
< --unit | -U > unit
< --at|-A > at

The individual options have the following meanings:

Option

Meaning

< --host | -h > hostname
< --port | -p > portnumber
< --user | -u > username
< --pass | -w > password

< --silent | -s >

Host name of the scheduling server

Port of the scheduling server

User name for the login

Password for the login (for a connection as
user)

Reduces the number of messages that are re-
turned

Continued on the next page

40

Continued from the previous page

Option

Meaning

< --verbose | -v >

< --timeout | -t > minutes
< --cycle | -c > minutes

< --help | -h >

< --suspend | -S >
< --delay | -D > delay

< --unit | -U > unit
< --at|-A > at

Increases the number of messages that are
returned

Number of minutes for attempting to get a
server connection

Number of minutes for the delay between
two attempts to set up a server connection

Returns a condensed help text about calling
the utility

The job is suspended

The job is automatically resumed after delay
units

Unit for the delay option (default MINUTE)
Automatic resume at the specified time

41

sdms-set_state

Introduction

Introduction The utility sdms-set_state offers a simple way of setting the state of a job in the
scheduling system.
The logic of the option files that applies for the sdmsh utility is also used for sdms-
set_state.

Call

Call The following commands are used to call sdmsh-set_state:

sdms-set_state [OPTIONS | < --host | -h > hostname
< --port | -p > portnumber < --jid | -j > jobid
< --state | -S > statename

OPTIONS:
< --user | -u > username
< --pass | -w > password
< --key | -k > jobkey
< --silent | -s >
< --verbose | -v >
< --timeout | -t > minutes
< --cycle | -c > minutes
< --help | -h >
< --case | -C >
< --[no]force | -[no |f >

The individual options have the following meanings:

Option Meaning

< --host | -h > hostname Host name of the scheduling server

< --port | -p > portnumber Port of the scheduling server

< --user | -u > username User name for the login

< --pass | -w > password Password for the login (for a connection as
user)

< --key | -k > jobkey Password for the login (for a connection as
job)

Continued on the next page

42

Continued from the previous page

Option

Meaning

< --silent | -s >

< --verbose | -v >

< --timeout | -t > minutes
< --cycle | -c > minutes

< --help | -h >

< --case | -C >

< --state | /-S > state
< --force | -f >

Reduces the number of messages that are re-
turned

Increases the number of messages that are
returned

Number of minutes for attempting to get a
server connection

Number of minutes for the delay between
two attempts to set up a server connection
Returns a condensed help text about calling
the utility

Regard names to be case sensitive

The state to set

Force if job does not define a mapping for
the specified state

43

sdms-set_variable

Introduction

Introduction The utility sdms-set_variable offers a simple way of setting job parameters in the
scheduling system.
The logic of the option files that applies for the sdmsh utility is also used for sdms-
set_variable.

Call

Call The following commands are used to call sdms-set_variable:

sdms-set_variable [OPTIONS | < --host | -h > hostname
< --port | -p > portnumber < --jid | -j > jobid
parametername value { parametername value}

OPTIONS:
< --user | -u > username
< --pass | -w > password
< --key | -k > jobkey
< --silent | -s >
< --verbose | -v >
< --timeout | -t > minutes
< --cycle | -c > minutes
< --help | -h >
< --case | -C >

The individual options have the following meanings:

Option Meaning

< --host | -h > hostname Host name of the scheduling server

< --port | -p > portnumber Port of the scheduling server

< --user | -u > username User name for the login

< --pass | -w > password Password for the login (for a connection as
user)

< --key | -k > jobkey for the login (for a connection as job)

< --silent | -s > Reduces the number of messages that are re-
turned

Continued on the next page

44

Continued from the previous page

Option

Meaning

< --verbose | -v >

< --timeout | -t > minutes
< --cycle | -c > minutes

< --help | -h >

< --case | -C >

Increases the number of messages that are
returned

Number of minutes for attempting to get a
server connection

Number of minutes for the delay between
two attempts to set up a server connection

Returns a condensed help text about calling
the utility

Names are case-sensitive

45

sdms-set_warning

Introduction

Introduction The utility sdms-set_warning is used to set the warning flag for a job. A text can
be optionally specified. The warning flag can be set for a job by users who have
been granted the Operate privilege. A job can set the warning flag for itself.

The logic of the option files that applies for the sdmsh utility is also used for sdms-
set_warning.

Call

Call The following commands are used to call sdms-set_warning:

sdms-set_warning [OPTIONS | < --host | -h > hostname
< --port | -p > portnumber < --jid | -j > jobid

OPTIONS:
< --user | -u > username
< --pass | -w > password
< --key | -k > jobkey
< --silent | -s >
< --verbose | -v >
< --timeout | -t > minutes
< --cycle | -c > minutes
< --help | -h >
< --warning | -m > warning

The individual options have the following meanings:

Option Meaning

< --host | -h > hostname Host name of the scheduling server

< --port | -p > portnumber Port of the scheduling server

< --user | -u > username User name for the login

< --pass | -w > password Password for the login (for a connection as
user)

< --key | -k > jobkey for the login (for a connection as job)

< --silent | -s > Reduces the number of messages that are re-
turned

Continued on the next page

46

Continued from the previous page

Option

Meaning

< --verbose | -v >

< --timeout | -t > minutes
< --cycle | -c > minutes

< --help | -h >

< --warning | -m > warning

Increases the number of messages that are
returned

Number of minutes for attempting to get a
server connection

Number of minutes for the delay between
two attempts to set up a server connection

Returns a condensed help text about calling
the utility

Warning text

47

Introduction

Call

sdms-submit

Introduction

The utility sdms-submit is used to start jobs or batches. These can be started as a
standalone workflow or also as a child of an existing job. In the latter case, if it is
defined in the parent-child hierarchy an alias can be specified to identify the job or
batch that is to be submitted.

The logic of the option files that applies for the sdmsh utility is also used for sdms-
submit.

Call

The following commands are used to call sdms-submit:

sdms-submit | OPTIONS | < --host | -h > hostname
< --port | -p > portnumber < --job | -] > jobname

OPTIONS:
< --user | -u > username
< --pass | -w > password
< --jid | -j > jobid
< --key | -k > jobkey
< --silent | -s >
< --verbose | -v >
< --timeout | -t > minutes
< --cycle | -c > minutes
< --help | -h >
< --tag | -T > tag
< --master | -M >
< --suspend | -S >
< --delay | -D > delay
< --unit | -U > unit
< --at|-A > at

The individual options have the following meanings:

Option Meaning

< --host | -h > hostname Host name of the scheduling server

Continued on the next page

48

Continued from the previous page

Option

Meaning

< --port | -p > portnumber
< --user | -u > username
< --pass | -w > password

< --key | -k > jobkey
< --silent | -s >

< --verbose | -v >

< --timeout | -t > minutes
< --cycle | -c > minutes

< --help | -h >

< --tag | -T > tag

< --master | -M >

< --suspend | -S >

< --delay | -D > delay

< --unit | -U > unit
< --at|-A > at

Port of the scheduling server

User name for the login

Password for the login (for a connection as
user)

for the login (for a connection as job)

Reduces the number of messages that are re-
turned

Increases the number of messages that are
returned

Number of minutes for attempting to get a
server connection

Number of minutes for the delay between
two attempts to set up a server connection

Returns a condensed help text about calling
the utility

Tag for dynamic submits

Submit for a master, no child

The job is suspended

The job is automatically resumed after delay
units

Unit for the delay option (default MINUTE)
Automatic resume at the specified time

49

Part Il.

User Commands

51

3. alter commands

53

alter comment

Purpose

Purpose The purpose of the alter comment statement is to change the comment for the
specified object.

Syntax

Syntax The syntax for the alter comment statement is

alter [existing | comment on OBJECTURL
with CC_WITHITEM

OBJECTURL:
distribution distributionname for pool identifier {. identifier} in serverpath
| environment environmentname
| exit state definition statename
| exit state mapping mappingname
| exit state profile profilename
| exit state translation transname
| event eventname
| resource identifier {. identifier} in folderpath
| folder folderpath
| footprint footprintname
| group groupname
| interval intervalname
| job definition folderpath
| job jobid
| nice profile profilename
| named resource identifier {. identifier}
| object monitor objecttypename
| parameter parametername of PARAM_LOC
| pool identifier {. identifier} in serverpath
| resource state definition statename
| resource state mapping mappingname
| resource state profile profilename
| scheduled event schedulepath . eventname
| schedule schedulepath
| resource identifier {. identifier} in serverpath
| < scope serverpath | jobserver serverpath >
| trigger triggername on TRIGGEROBJECT [< noinverse | inverse > |
| user username

E =

54

| watch type watchtypename

CC_WITHITEM:
CC_TEXTITEM {, CC_TEXTITEM}
| url = string

PARAM_LOC:
folder folderpath
| job definition folderpath
| named resource identifier {. identifier}
| < scope serverpath | jobserver serverpath >

TRIGGEROBJECT:
resource identifier {. identifier} in folderpath
| job definition folderpath
| named resource identifier {. identifier}
| object monitor objecttypename
| resource identifier {. identifier} in serverpath
CC_TEXTITEM:
tag = < none | string >, text = string
| text = string

Description

The alter comment command is used to change the condensed description or URL
of the description of the object in question. Of course, the type of information can
be changed as well. The comment is versioned. This means that comments are not
overwritten. When the commented object is displayed, the displayed comment is
the one that matches the version of the displayed object.

The optional existing keyword is used to prevent error messages from being dis-
played and the current operation from being terminated. This is particularly useful
in conjunction with multicommands.

Output

This statement returns a confirmation of a successful operation.

55

Description

Output

Purpose

Syntax

Description

Output

alter distribution

Purpose

The purpose of the alter distribution statement is to change an already existing

distribution of resource amounts.

Syntax

The syntax for the alter distribution statement is

alter [existing | distribution distributionname for pool identifier {.

identifier} in serverpath
with cD_wiTH

CD_WITH:

resource = none
resource = (CPL_RESOURCE {, CPL_RESOURCE})

CPL_RESOURCE:
CPL_RES_ITEM { CPL_RES_ITEM}

CPL_RES_ITEM:

< managed | not managed >

resource identifier {. identifier} in folderpath
freepct = integer

maxpct = integer

minpct = integer

nominalpct = integer

pool identifier {. identifier} in serverpath
resource identifier {. identifier} in serverpath

Description

The alter distribution statement is used to change the distribution of amounts
using Pooled Resources. The single options equate to the options as described for
the create pool statement. (See the description on page 179 for details.)

Output

This statement returns a confirmation of a successful operation.

56

alter environment

Purpose

The purpose of the alter environment statement is to alter the properties of the
specified environment.
Syntax

The syntax for the alter environment statement is

alter [existing | environment environmentname
with ENV_WITH_ITEM

alter [existing | environment environmentname
add (ENV_RESOURCE {, ENV_RESOURCE})

alter [existing | environment environmentname
delete (RESOURCEPATH {, RESOURCEPATH})

ENV_WITH_ITEM:
resource = none
resource = (ENV_RESOURCE {, ENV_RESOURCE})

ENV_RESOURCE:
identifier {. identifier} | < condition = string | condition = none > |

RESOURCEPATH:
identifier {. identifier}

Description

The alter environment statement is used to change the resource requests that are
defined in this environment. Running jobs are not affected.
The ”"with resource =" form of the statement replaces the existing group of resource
requests. The other types either add the specified requests or deletes them. It is
considered an error to delete a request that is not part of the environment or to add
a request for an already required resource.
Only administrators are authorised to perform this action.

Output

This statement returns a confirmation of a successful operation.

57

Purpose

Syntax

Description

Output

Purpose

Syntax

Description

Output

alter event

Purpose

The purpose of the alter event statement is to change properties of the specified
event.
Syntax

The syntax for the alter event statement is

alter | existing | event eventname
with EVENT_WITHITEM {, EVENT_WITHITEM}

EVENT_WITHITEM:
action =
submit folderpath [with parameter = (PARAM {, PARAM}) |
| group = groupname

PARAM:
parametername = < string | number >

Description

The alter event statement is used to change the properties of an event. A parame-
ter for a job submit can be specified using the with parameter clause. For a detailed
description of these options, refer to the create event statement on page 131.

Output

This statement returns a confirmation of a successful operation.

58

alter exit state mapping

Purpose

The purpose of the alter exist state mapping statement is to change properties of
the specified mapping.

Syntax

The syntax for the alter exit state mapping statement is

alter | existing | exit state mapping mappingname
with map = (statename {, signed_integer , statename })

Description

The alter exit state mapping statement defines the mapping of the Exit Codes for
logical Exit States. The simplest form of this statement only specifies one Exit State.
This means that the job acquires this Exit State when it finishes regardless of its Exit
Code. More complex definitions specify more than one Exit State and at least one
delimitation.

A statement like

alter exit state mapping examplel
with map = (failure,

0, success,

1, warning,

4, failure);

defines the following mapping;:

Exitcode Exitcode Resulting
range from range until exit state

—00 -1 failure
0 0 success
1 3 warning
4 00 failure

Output

This statement returns a confirmation of a successful operation.

59

Purpose

Syntax

Description

Output

Purpose

Syntax

Description

alter exit state profile

Purpose

The purpose of the alter exit state profile statement is to change properties of the
specified profile.

Syntax

The syntax for the alter exit state profile statement is

alter [existing | exit state profile profilename
with WITHITEM {, WITHITEM}

WITHITEM:
default mapping = < none | mappingname >
| force
| state = (ESP_STATE {, ESP_STATE})

ESP_STATE:
statename < final | restartable | pending > [OPTION { OPTION}]

OPTION:
batch default
| broken
| dependency default
| disable
| unreachable

Description

The alter exit state profile statement is used to add Exit States to the profile or
delete them, as well as to define the default Exit State Mapping. For a detailed
description of these options, refer to the create exit state profile statement on page
134.

force The force option labels the Exit State Profiles as being invalid, which only
means that the integrity still has to be verified. The label is removed after a success-
ful verification. The verification is carried out by submitting a job definition that
uses the Exit State Profiles. The purpose of the force flag is to be capable of chang-
ing several Exit State Profiles (and perhaps some other objects) without the need
for a consistent state after each change.

60

Output

This statement returns a confirmation of a successful operation. Output

61

Purpose

Syntax

Description

Output

alter exit state translation

Purpose

The purpose of the alter exit state translation statement is to change properties of
the specified exit state translation.
Syntax

The syntax for the alter exit state translation statement is

alter [existing | exit state translation transname
with translation = (statename to statename {, statename to statename}
)

Description

The alter exit state translation statement changes a previously defined Exit State
Translation. Running jobs are not affected.
If the optional existing keyword has been specified, no error is created if the speci-
fied Exit State Translation could not be found.

Output

This statement returns a confirmation of a successful operation.

62

alter folder

Purpose

The purpose of the alter folder statement is to alter the properties of a folder.

Syntax

The syntax for the alter folder statement is

alter [existing | folder folderpath
with WITHITEM {, WITHITEM}

WITHITEM:

environment = < none | environmentname >

group = groupname | cascade]

inherit grant = none

inherit grant = (PRIVILEGE {, PRIVILEGE})

parameter = none

parameter = (parametername = string {, parametername = string})

PRIVILEGE:

approve
cancel

clear warning
clone

create content
drop

edit [parameter |
enable

execute

ignore resource
ignore dependency
kill

monitor

operate

priority

rerun

resource

set job status

set state

submit

suspend

63

Purpose

Syntax

Description

Output

| use
| view

Description

The alter folder statement changes the properties of a folder. For a detailed de-
scription of these options, refer to the create folder statement on page 138.
If the optional existing keyword has been specified, no error is created if the speci-
fied folder does not exist.
Although the folder SYSTEM cannot be created, dropped or renamed, it can be
altered to some extend. It is not possible to change the owning group, but it is
possible to specify an environment or to create parameters.

Output

This statement returns a confirmation of a successful operation.

64

alter footprint

Purpose

The purpose of the alter footprint statement is to change the properties of the
specified footprint.
Syntax

The syntax for the alter footprint statement is

alter [existing | footprint footprintname
with resource = (REQUIREMENT {, REQUIREMENT})

alter [existing | footprint footprintname
add resource = (REQUIREMENT {, REQUIREMENT})

alter [existing | footprint footprintname
delete resource = (RESOURCEPATH {, RESOURCEPATH]})

REQUIREMENT:
ITEM { ITEM}

RESOURCEPATH:
identifier {. identifier}

ITEM:
amount = integer
| < nokeep | keep | keep final >
| identifier {. identifier}

Description

The alter footprint command changes the list of resource requests. There are three
kinds of this statement.

¢ The first one determines all the resource requests.
¢ The second one adds resource requests to the request list.
¢ The third kind removes requests from the list.

For a detailed description of these options, refer to the create footprint statement on
page 140.

65

Purpose

Syntax

Description

Output

Output This statement returns a confirmation of a successful operation.

66

alter group

Purpose

The purpose of the alter group statement is to alter the user to group assignments. Purpose

Syntax

The syntax for the alter group statement is Syntax

alter [existing | group groupname
with WITHITEM

alter [existing | group groupname
ADD_DELITEM {, ADD_DELITEM}

WITHITEM:
user = none
user = (username {, username})

ADD_DELITEM:
< add | delete > user = (username {, username})
Description

The alter group command is used to define which users belong to the group. Description
There are two kinds of this statement:

¢ The first one defines the list of users who belong to the group.

¢ The second one adds users to the group or deletes them.

In all cases, deleting users from their default group is considered to be an error.

It is not possible to delete users from the PUBLIC group.

If a user does not belong to a group, any attempt made to delete the user from this
group is ignored.

If the existing keyword has been specified, it is not considered to be an error if the
group does not exist.

Output

This statement returns a confirmation of a successful operation. Output

67

al

ter interval

Purpose

Purpose

The purpose of the alter interval statement is to change properties of the specified

interval.

Syntax

Syntax

68

The syntax for the alter interval statement is

alter [existing | interval intervalname
with WITHITEM {, WITHITEM}

WITHITEM:
base = < none | period >
| dispatch = none
| dispatch = (IVAL_DISPATCHITEM {, IVAL_DISPATCHITEM})
| duration = < none | period >
| embedded = < none | CINTERVALNAME >
| endtime = < none | datetime >
| filter = none
| filter = (CINTERVALNAME {, CINTERVALNAME})
| < noinverse | inverse >
| selection = none
| selection = (IVAL_SELITEM {, IVAL_SELITEM})
| starttime = < none | datetime >
| synctime = datetime
| group = groupname

IVAL_DISPATCHITEM:
dispatchname < active | inactive > IVAL_DISPATCHDEF

CINTERVALNAME:
(intervalname
with WITHITEM {, WITHITEM})
| intervalname

IVAL_SELITEM:
< signed_integer | datetime | datetime - datetime >

IVAL_DISPATCHDEF:
none CINTERVALNAME < enable | disable >
| CINTERVALNAME CINTERVALNAME < enable | disable >
| CINTERVALNAME < enable | disable >

Description

The alter interval command is used to change an interval definition. For a detailed = Description
description of these options, refer to the create interval statement on page 143.
If the existing keyword has been specified, it is not considered to be an error if the
interval does not exist.

Output

This statement returns a confirmation of a successful operation. Output

69

alter job

Purpose

Purpose The purpose of the alter job statement is to change properties of the specified job.
This statement is is used by job administrators, jobservers, and by the job itself.

Syntax

Syntax The syntax for the alter job statement is

alter job jobid
with WITHITEM {, WITHITEM}

alter job
with WITHITEM {, WITHITEM}

WITHITEM:
< disable | enable >
| < suspend | suspend restrict | suspend local | suspend local restrict >
| cancel
| clear warning
| clone [< resume | suspend > |
| comment = string
| error text = string
| exec pid = pid
| exit code = signed_integer
| exit state = statename | force |
| ext pid = pid
| ignore resource = (id {, id})
| ignore dependency = (jobid [recursive | {, jobid [recursive |})
| kill [recursive]
| nicevalue = signed_integer
| priority = integer
| renice = signed_integer
| rerun [recursive]
| resume
| < noresume | resume in period | resume at datetime >
| run = integer
| state = JOBSTATE
| timestamp = string
| warning = string

70

JOBSTATE:
broken active
| broken finished
| dependency wait
| error
| finished
| resource wait
| running
| started
| starting
| synchronize wait

Description

The alter job command is used for several purposes. Firstly, jobservers use this
command to document the progress of a job. All the state transitions a job under-
goes during the time when the job is the responsibility of a jobserver are performed
using the alter job command.

Secondly, some changes such as ignoring dependencies or resources, as well as
changing the priority of a job, are carried out manually by an administrator.

The Exit State of a job in a Pending State can be set by the job itself or by a process
that knows the job ID and key of the job that is to be changed.

cancel The cancel option is used to cancel the addressed job and all non-Final
Children. A job can only be cancelled if neither the job itself nor one of its children
is active. Cancelling a running job will set the job in a cancelling state. The effective
cancel is postponed until the job is finished.
If a Scheduling Entity is dependent upon the cancelled job, it can become unreach-
able. In this case the dependent job does not acquire the Unreachable Exit State
defined in the Exit State Profiles, but is set as having the Job State “Unreachable”.
It is the operator’s task to restore this job back to the job state “Dependency Wait”
by ignoring dependencies or even to cancel it.
Cancelled jobs are considered to be just like Final Jobs without a Final Exit. This
means that the parents of a cancelled job become final without taking into consid-
eration the Exit State of the cancelled job. In this case the dependent jobs of the
parents continue running normally.
The cancel option can only be used by users.

comment The comment option is used to document an action or to add a com-
ment to the job. Comments can have a maximum length of 1024 characters. Any
number of comments can be saved for a job.
Some comments are saved automatically. For example, if a job attains a Restartable
State, a log is written to document this fact.

71

Description

error text The error text option is used to write error information about a job.
This can be done by the responsible jobserver or a user. The server can write this
text itself as well.
This option is normally used if the jobserver cannot start the corresponding pro-
cess. Possible cases are where it is not possible to switch to the defined working
directory, if the executable program cannot be found, or when opening the error
log file triggers an error.

exec pid The exec pid option is used exclusively by the jobserver to set the
process ID of the control process within the server.

exit code The exit code option is used by the jobserver to tell the repository
server with which Exit Code the process has finished. The repository server now
calculates the matching Exit State from the Exit State Mapping that was used.

exit state The exit state option is used by jobs in a pending state to set their
state to another value. This is usually a Restartable or Final State.
Alternatively, this option can be used by administrators to set the state of a non-
final job.
If the Force Flag is not being used, the only states that can be set are those which
are theoretically attainable by applying the Exit State Mapping to any Exit Code.
The set state must exist in the Exit State Profile.

ext pid The ext pid option is used exclusively by the jobserver to set the process
ID of the started user process.

ignore resource The ignore resource option is used to revoke individual Re-
source Requests. The ignored resource is then no longer requested.
If the parameters of a resource are being referenced, that resource cannot be ig-
nored.
If invalid IDs have been specified, it is skipped. All other specified resources are
ignored. Invalid IDs in this context are the IDs of resources that are not requested
by the job.
The ignoring of resources is logged.

ighore dependency The ignore dependency option is used to ignore defined
dependencies. If the recursive flag is used, not only do the job or batch ignore the
dependencies, but its children do so as well.

72

Kill The kill option is used to submit the defined Kill Job. If no Kill Job has been
defined, it is not possible to forcibly terminate the job from within BICsuite. The job
obviously has to be active, that means it must be running, killed or broken_active.
The last two states are not regular cases. When a Kill Job has been submitted, the
Job State is to_kill. After the Kill Job has terminated, the Job State of the killed job
is set to killed unless it has been completed, in which case it is finished or final.
This means that the job with the Job State killed is always still running and that at
least one attempt has been made to terminate it.

nicevalue The nicevalue option is used to change the priority or the nicevalue
of a job or batch and all of its children. If a child has several parents, any changes
you make can, but do not necessarily have to, affect the priority of the child in the
nicevalue of one of the parents. Where there are several parents, the maximum
nicevalue is searched for.
This means that if Job C has three Parents P1, P2 and P3, whereby P1 sets a nice
value of 0, P2 sets a nicevalue of 10 and 3 a nicevalue of -10, the effective nicevalue
is -10. (The lower the nicevalue the better). If the nicevalue for P2 is changed to -5,
nothing happens because the -10 of P3 is better than -5. If the nicevalue of P3 falls
to 0, the new effective nicevalue for Job C is -5.
The nicevalues can have values between -100 and 100. Values that exceed this range
are tacitly adjusted.

priority The priority option is used to change the (static) priority of a job. Be-
cause batches and milestones are not executed, priorities are irrelevant to them.
Changing the priority only affects the changed job. Valid values lie between 0 and
100. In this case, 100 corresponds to the lowest priority and 0 is the highest priority.
When calculating the dynamic priority of a job, the scheduler begins with the static
priority and adjusts it according to how long the job has already been waiting. If
more than one job has the same dynamic priority, the job with the lowest job ID is
scheduled first.

renice The renice option is similar to the nicevalue option with the difference
that the renice option functions relatively while the nicevalue option functions ab-
solutely. If some batches have a nicevalue of 10, a renice of -5 causes the nicevalue
to rise to 5. (It rises because the lower the number, the higher the priority).

rerun The rerun option is used to restart a job in a Restartable State. If you
attempt to restart a job that is not restartable, an error message is displayed. A
job is restartable if it is in a Restartable State or it has the Job State error or bro-
ken_finished.
If the recursive flag has been specified, the job itself and all its direct and indirect
children that are in a Restartable State are restarted. If the job itself is final, this is

73

Output

not considered to be an error. It is therefore possible to recursively restart batches.

resume The resume option is used to reactivate a suspended job or batch.
There are two ways to do this. The suspended job or batch can either be reacti-
vated immediately or a delay can be set.
A delay can be achieved by specifying either the number of time units for the delay
the time when the job or batch is to be activated.
For details about specifying a time, refer to the overview on page 20. The resume
option can be used together with the suspend option. Here, the job is suspended
and then resumed again after (or at) a specified time.

run The run option is used by the jobserver to ensure that the modified job
matches the current version.
Theoretically, the computer could crash after a job has been started by a jobserver.
To complete the work, the job is manually restarted from another jobserver. After
the first system has been booted, the jobserver can attempt to change the job state to
broken_finished without knowing anything about what happened after the crash.
Using the run option then prevents the wrong state from being set.

state The state option is mainly used by jobservers, but it can also be used by
administrators. It is not recommended to do so unless you know exactly what you
are doing.
The usual procedure is that the jobserver sets the state of a job from starting to
started, from started to running, and from running to finished. In the event of a
crash or any other problems, it is possible for the jobserver to set the job state to
broken_active or broken_finished. This means that the Exit Code of the process is
not available and the Exit State has to be set manually.

suspend The suspend option is used to suspend a batch or job. It always func-
tions recursively. If a parent is suspended, its children are all suspended as well.
The resume option is used to reverse the situation.
The effect of the restrict option is that cwa resume can be done by members of the
group ADMIN only.

timestamp The timestamp option is used by the jobserver to set the times-
tamps of the state transition in keeping with the local time from the perspective
of jobserver.

Output

This statement returns a confirmation of a successful operation.

74

alter job definition

Purpose

The purpose of the alter job definition statement is to change properties of the
specified job definition.

Syntax

The syntax for the alter job definition statement is

alter [existing | job definition folderpath
with WITHITEM {, WITHITEM}

alter [existing | job definition folderpath
AJD_ADD_DEL_ITEM {, AJD_ADD_DEL_ITEM}

WITHITEM:

aging = < none | period >

approval = none

approval = (OPERATE_APPROVAL {, OPERATE_APPROVALY})
children = none

children = (JOB_CHILDDEF {, JOB_CHILDDEF})
dependency mode = < all | any >

environment = environmentname

errlog = < none | filespec [< notrunc | trunc > | >
footprint = < none | footprintname >

inherit grant = none

inherit grant = (PRIVILEGE {, PRIVILEGE})

kill program = < none | string >

logfile = < none | filespec | < notrunc | trunc > | >
mapping = < none | mappingname >

< nomaster | master >

min priority =

< none | integer >

nicevalue = < none | signed_integer >

parameter = none

parameter = (JOB_PARAMETER {, JOB_PARAMETER})
priority = < none | signed_integer >

profile = profilename

required = none

required = (JOB_REQUIRED {, JOB_REQUIRED})
rerun program = < none | string >

75

Purpose

Syntax

76

resource = none

resource = (REQUIREMENT {, REQUIREMENT})
< noresume | resume in period | resume at datetime >
runtime = integer

runtime final = integer

run program = < none | string >

< nosuspend | suspend >

timeout = none

timeout = period state statename

type = < job | milestone | batch >

group = groupname

workdir = < none | string >

AJD_ADD_DEL_ITEM:

add [or alter | children = (JOB_CHILDDEF {, JOB_CHILDDEF})

add [or alter | parameter = (JOB_PARAMETER {, JOB_PARAMETER})
add [or alter | required = (JOB_REQUIRED f{, JOB_REQUIRED})

add | or alter | resource = (REQUIREMENT {, REQUIREMENT})

alter | existing | children = (JOB_CHILDDEF {, JOB_CHILDDEF})
alter | existing | parameter = (JOB_PARAMETER {, JOB_PARAMETER})
alter | existing | required = (JOB_REQUIRED {, JOB_REQUIRED})
alter | existing | resource = (REQUIREMENT {, REQUIREMENT})
delete [existing | children = (folderpath {, folderpath})

delete [existing | parameter = (parmlist)

delete [existing | required = (folderpath {, folderpath})

delete [existing | resource = (RESOURCEPATH {, RESOURCEPATH})

OPERATE_APPROVAL:
OPERATE_PRIV APPROVAL_MODE | leading |

JOB_CHILDDEF:
JCD_ITEM { JCD_ITEM}

PRIVILEGE:

approve
cancel

clear warning
clone

create content
drop

| edit [parameter |
| enable

| execute

| ignore resource

| ignore dependency
| Kkill

| monitor

| operate

| priority

| rerun

| resource

| setjob status

| set state

| submit

| suspend

| use

| view

JOB_PARAMETER:
parametername [(id) | < [JP_WITHITEM | [default = string | | JP_NONDEFWITH >
[local | [< export = parametername | export = none > |

JOB_REQUIRED:
JRQ_ITEM { JRQ_ITEM]}

REQUIREMENT:
JRD_ITEM { JRD_ITEM}

RESOURCEPATH:
identifier {. identifier}

OPERATE_PRIV:
cancel

| clear warning

| clone

| edit parameter

| enable

| ignore resource

| ignore dependency

| Kkill

77

78

| priority

| rerun

| set job status
| set state

| suspend

APPROVAL_MODE:
approve

| default

| master

| no

| parent

| review

JCD_ITEM:

alias = < none | aliasname >
| condition = < none | string >
| < enable | disable >
| folderpath . jobname
| ignore dependency = none
| ignore dependency = (dependencyname {, dependencyname})
| interval = < none | intervalname >
| < childsuspend | suspend | nosuspend >
| merge mode = < nomerge | merge local | merge global | failure >
| mode =< and | or >
| nicevalue = < none | signed_integer >
| priority = < none | signed_integer >
| < noresume | resume in period | resume at datetime >
| < static | dynamic >
| translation = < none | transname >
JP_WITHITEM:

import [unresolved |

| parameter

| reference child folderpath (parametername)
| reference folderpath (parametername)
| reference resource identifier {. identifier} (parametername)
| result

JP_NONDEFWITH:

constant = string
| JP_AGGFUNCTION (parametername)

JRQ_ITEM:
condition = < none | string >
| dependency dependencyname
| expired = < none | signed_period_rj >
| folderpath . jobname
| mode = < all final | job final >
| resolve = < internal | external | both >
| select condition = < none | string >
| state =none
| state = (JRQ_REQ_STATE {, JRQ_REQ_STATE})
| state = all reachable
| state = default
| state = unreachable
| unresolved = JRQ_UNRESOLVED

JRD_ITEM:
amount = integer

| expired = < none | signed_period >
| < nokeep | keep | keep final >
| condition = < string | none >
| lockmode = LOCKMODE
| nosticky

| identifier {. identifier}

| state =none

| state = (statename {, statename})

| state mapping = < none | rsmname >

| sticky

[(< identifier | folderpath | identifier , folderpath | folderpath , identifier >) |

JP_AGGFUNCTION:
avg

| count

| max

| min

| sum

JRQ_REQ_STATE:

statename [< condition = string | condition = none >]

79

JRQ_UNRESOLVED:
defer

defer ignore
error

ignore
suspend

LOCKMODE:

Description

Description The alter job definition command has two different variants.

¢ The first is similar to the create job definition statement and is used to redefine
the job definition. All the affected options are overwritten. All the unad-
dressed options remain as they are.

¢ The second variant is used to add, edit or delete entries from the lists of chil-
dren, resource requests, dependencies or parameters.

The options are described in detail in the create job definition command on page 150.
This also applies for the options in the child, resource request, dependency and
parameter definitions.

If the existing keyword is being used, an error is not triggered if the addressed job
definition does not exist. The same applies if the existing keyword is being used
while the list entries are being deleted or edited.

Output

Output This statement returns a confirmation of a successful operation.

80

alter named resource

Purpose

The purpose of the alter named resource statement is to change its properties.

Syntax

The syntax for the alter named resource statement is

alter [existing | named resource identifier {. identifier}
with WITHITEM {, WITHITEM}

WITHITEM:

factor = float

group = groupname | cascade |

inherit grant = none

inherit grant = (PRIVILEGE {, PRIVILEGE})
parameter = none

parameter = (PARAMETER {, PARAMETER})
state profile = < none | rspname >

PRIVILEGE:

approve
cancel

clear warning
clone

create content

drop

edit [parameter]
enable

execute

ignore resource
ignore dependency
kill

monitor

operate

priority

rerun

resource

set job status

81

Purpose

Syntax

Description

Output

| setstate
| submit

| suspend
| use

| view

PARAMETER:
parametername constant = string
| parametername local constant | = string |
| parametername parameter [= string |

Description

The alter named resource statement is used to change the properties of the Named
Resource. For a detailed description of the options, refer to the description of the
create named resource statement on page 171.

If the existing keyword has been specified, attempting to modify a non-existent
Named Resource will not trigger an error.

Output

This statement returns a confirmation of a successful operation.

82

alter nice profile

Purpose

With the alter nice profile statement nice profiles can be activated, deactivated and Purpose
changed.

Syntax

The syntax for the alter nice profile statement is Syntax

alter [existing | nice profile profilename
with NPWITHITEM {, NPWITHITEM}

NPWITHITEM:
< active | inactive >
| profile = none
| profile = (NPENTRY {, NPENTRY})

NPENTRY:
NPENTRYITEM { NPENTRYITEM}

NPENTRYITEM:
< active | inactive >
| folder folderpath
| nosuspend
| renice = signed_integer
| suspend | restrict |

Description

The alter nice profile statement is used to activate, to deactivate or to change the Description
definition of a Nice Profile. A Nice Profile defines a ruleset to prioritise, suspend or
resume already submitted jobs as well as jobs that will be submitted in the future.
The entries in a Nice Profile are evaluated in sequence. Subsequent entries override
the rules of previous entries as far as they refer to the same objects.
If more than one Nice Profile is activated, the rules are logically appended in se-
quance of activation.
An entry consists of a Folderpath and the action to be taken (renice, suspend, re-
sume). If a folder is specified, the rule applies to all job definitions in or below that
folder.

83

The basic idea of Nice Profiles is to have a tool to assign all jobs and waiting jobs
an appropriate priority respectively suspend state in case of exceptional circum-
stances, like for instance an unplanned downtime.

Output

Output This statement returns a confirmation of a successful operation.

84

alter object monitor

Purpose

The purpose of the alter object monitor statement is to change properties of the
object monitor.

Syntax

The syntax for the alter object monitor statement is

alter [existing | object monitor objecttypename
with WITHITEM {, WITHITEM}

WITHITEM:

delete < none | after period >

event delete < none | after period >

instance = ([INSTANCEITEM {, INSTANCEITEM} |)
parameter = (PARAMETERSPEC {, PARAMETERSPEC})
recreate = < create | none | change >

watcher = < none | folderpath >

group = groupname

INSTANCEITEM:
instancename [(PARAMETERSPEC {, PARAMETERSPEC}) |

PARAMETERSPEC:
parametername = < string | default >

Description

The alter object monitor statement can be executed by both users and jobs.

Jobs use the command to inform the server about the current situation regarding
the objects to be monitored. If the server then detects any changes (new, modified
or deleted objects), the respective triggers are activated. The activation order is
not defined. If a trigger creates a job for each modified instance however, these
are created per trigger in the alphabetical order of the unique names. This means
that the processing sequence of instances is defined, at least per trigger. The job is
responsible for reporting all the existing instances. If an instance is not reported, it
is deemed to have been deleted.

85

Purpose

Syntax

Description

Output

Output This statement returns a confirmation of a successful operation.

86

alter pool

Purpose

The purpose of the alter pool statement is to alter properties of a resource pool.

Syntax

The syntax for the alter pool statement is

alter [existing | pool identifier {. identifier} in serverpath
with CPL_WITHITEM {, CPL_WITHITEM}

alter [existing | pool identifier {. identifier} in serverpath activate
distribution distributionname

CPL_WITHITEM:

amount = integer

base multiplier = integer

cycle = < none | integer >

resource = none

resource = (CPL_RESOURCE {, CPL_RESOURCE})
tag = < none | string >

trace base = < none | integer >

trace interval = < none | integer >

group = groupname

CPL_RESOURCE:
CPL_RES_ITEM { CPL_RES_ITEM}

CPL_RES_ITEM:

< managed | not managed >

resource identifier {. identifier} in folderpath
freepct = integer

maxpct = integer

minpct = integer

nominalpct = integer

pool identifier {. identifier} in serverpath
resource identifier {. identifier} in serverpath

87

Purpose

Syntax

Description

Output

Description

The first variant of the alter pool statement is used to change the properties of a
pool. The default distribution of the amounts can also be permanently changed. If
the distribution is only to be changed temporarily, it is advisable to perform this
task using distributions (refer to the create distribution statement on page 128 for
details).

The second variant of the alter pool statement is used for activating distributions.
If the existing keyword has been specified, an error is not triggered when a non-
existent pool is addressed. This is particularly significant in conjunction with mul-
ticommands.

Output

This statement returns a confirmation of a successful operation.

88

alter resource

Purpose

The purpose of the alter resource statement is to change properties of resources. ~ Purpose
Syntax

The syntax for the alter resource statement is Syntax

alter [existing | RESOURCE_URL [with WITHITEM {, WITHITEM} |

RESOURCE_URL:
resource identifier {. identifier} in folderpath
resource identifier {. identifier} in serverpath

WITHITEM:
amount = < infinite | integer >
| < online | offline >
| base multiplier = integer
| factor = < none | float >
| parameter = none
| parameter = (PARAMETER {, PARAMETER})
| requestable amount = < infinite | integer >
| state = statename
| tag= < none | string >
| touch [= datetime]
| trace base =
< none | integer >
| trace interval =
< none | integer >
| group = groupname

PARAMETER:
parametername = < string | default >

Description

The alter resource statement is used to change the properties of resources. For Description
a detailed description of the options, refer to the description of the create resource
statement on page 182.

89

If the existing keyword has been specified, attempting to modify a non-existent
resource will not trigger an error.

Output

Output This statement returns a confirmation of a successful operation.

90

alter resource state mapping

Purpose

The purpose of the alter resource state mapping statement is to change properties
of the mapping.

Syntax

The syntax for the alter resource state mapping statement is

alter [existing | resource state mapping mappingname
with map = (WITHITEM {, WITHITEM})

WITHITEM:
statename maps < statename | any > to statename

Description

The alter resource state mapping statement is used to change the properties of the
Resource State Mapping. For a detailed description of the options, refer to the
description of the create resource state mapping statement on page 188.

If the existing keyword has been specified, attempting to modify a non-existent
Resource State Mapping will not trigger an error.

Output

This statement returns a confirmation of a successful operation.

91

Purpose

Syntax

Description

Output

Purpose

Syntax

Description

Output

alter resource state profile

Purpose

The purpose of the alter resource state profile statement is to change properties of
the specified resource state profile.

Syntax

The syntax for the alter resource state profile statement is

alter [existing | resource state profile profilename
with WITHITEM {, WITHITEM}

WITHITEM:
initial state = statename
| state = (statename {, statename})

Description

The alter resource state profile statement is used to change the properties of the
Resource State Profile. For a detailed description of the options, refer to the de-
scription of the resource state profile statement on page 189.

If the existing keyword has been specified, attempting to modify a non-existent
Resource State Profile does not return an error.

Output

This statement returns a confirmation of a successful operation.

92

alter schedule

Purpose

The purpose of the alter schedule statement is to change properties of the specified Purpose
schedule.

Syntax

The syntax for the alter schedule statement is Syntax

alter [existing | schedule schedulepath
with WITHITEM {, WITHITEM}

WITHITEM:
< active | inactive >
| inherit grant = none
| inherit grant = (PRIVILEGE {, PRIVILEGE})
| interval = < none | intervalname >
| time zone = string
| group = groupname

PRIVILEGE:
approve
| cancel
| clear warning
| clone
| create content
| drop
| edit [parameter |
| enable
| execute
| ignore resource
| ignore dependency
| Kkill
| monitor
| operate
| priority
| rerun
| resource
| setjob status
| setstate
| submit

93

| suspend
| use
| view

Description

Description The alter schedule statement is used to change the properties of a schedule. For
a detailed description of the options for the create schedule statement, refer to page
190.
If the existing keyword has been specified, attempting to modify a non-existent
schedule will not trigger an error.

Output

Output This statement returns a confirmation of a successful operation.

94

alter scheduled event

Purpose

The purpose of the alter scheduled event statement is to change properties of the
specified scheduled event.

Syntax

The syntax for the alter scheduled event statement is

alter [existing | scheduled event schedulepath . eventname
with WITHITEM {, WITHITEM}

WITHITEM:
< active | inactive >
| backlog handling = < last | all | none >
| calendar = < active | inactive >
| horizon = < none | integer >
| suspend limit = < default | period >
| group = groupname

Description

The alter scheduled event statement is used to change the properties of a specified
Scheduled Event. For a detailed description of the options for the create scheduled
event statement, refer to page 192.

If the existing keyword has been specified, attempting to modify a non-existent
Scheduled Event does not return an error.

Output

This statement returns a confirmation of a successful operation.

95

Purpose

Syntax

Description

Output

alter scope

Purpose
Purpose The purpose of the alter scope statement is to change the properties of the speci-
tied scope.
Syntax
Syntax The syntax for the alter scope statement is

alter [existing | < scope serverpath | jobserver serverpath >
with JS_WITHITEM {, J]S_WITHITEM}

alter [existing | jobserver
with < fatal | nonfatal > error text = string

alter [existing | jobserver
with dynamic PARAMETERS

JS_WITHITEM:
config = none
| config = (CONFIGITEM {, CONFIGITEM})
| < enable | disable >
| error text = < none | string >
| group = groupname [cascade]
| inherit grant = none
| inherit grant = (PRIVILEGE {, PRIVILEGE})
| node = nodename
| parameter = none
| parameter = (PARAMETERITEM {, PARAMETERITEM})
| password = string
| rawpassword = string | salt = string |

PARAMETERS:
parameter = none
| parameter = (PARAMETERSPEC {, PARAMETERSPEC})

96

CONFIGITEM:
parametername = none
| parametername = (PARAMETERSPEC {, PARAMETERSPEC})
| parametername = < string | number >

PRIVILEGE:

approve

cancel

clear warning
clone

create content
drop

edit [parameter]
enable

execute

ignore resource
ignore dependency
kill

monitor
operate
priority

rerun

resource

set job status
set state
submit
suspend

use

view

PARAMETERITEM:
parametername = dynamic
| parametername = < string | number >

PARAMETERSPEC:
parametername = < string | number >

Description

The alter scope command is a user command. This command is used to modify Description
the configuration or other properties of a scope.

97

Output

Output This statement returns a confirmation of a successful operation.

98

alter server

Purpose

The purpose of the alter server statement is to enable or disable user connections,
or to define the trace level.

Syntax

The syntax for the alter server statement is
alter server with < enable | disable > connect
alter server with schedule
alter server with trace level = integer
alter server with < suspend | resume > integer

Description

The alter server command can be used to activate and deactivate the ability to
connect to the server. If this possibility has been deactivated, only the "System"
user can connect to the server.

The alter server command is also used to define the logged server message types.
The following information types are defined:

Type Meaning

Fatal A fatal error has occurred. The server is being
run down.

Error An error has occurred.

Info An important informational message that was

not written due to an error.
Warning A warning.
Message An informative message.
Debug Messages that can be used for troubleshooting.

Fatal messages, error messages and info messages are always written to the server
log file. Warnings are written at Trace Level 1 or higher. Normal messages are
written at Trace Level 2 or higher. Debug messages provide a large volume of
output data and are returned at Trace Level 3.

The schedule option is used to make a scheduling thread execute a full reschedule.
The suspend/resume option can be used to suspend or resume internal threads.

99

Purpose

Syntax

Description

Output

Output This statement returns a confirmation of a successful operation.

100

alter session

Purpose

The purpose of the alter session statement is to specify the used protocol, the Purpose
session timeout value or the trace level for the specified session.

Syntax

The syntax for the alter session statement is Syntax

alter session | sid |
with WITHITEM {, WITHITEM}

alter session set user = username [with WITHITEM {, WITHITEM} |

alter session set user = username for username | with WITHITEM {,
WITHITEM} |

alter session set user is default

WITHITEM:
command = (sdms-command {; sdms-command)})
| method = string
| protocol = PROTOCOL
| session = string
| timeout = integer
| token = string
| < trace | notrace >
| trace level = integer

PROTOCOL:
json [ZERO TERMINATED |
| line
| perl [ZERO TERMINATED |
| python [ZERO TERMINATED |
| serial
| xml

Description

The alter session command can be used to enable and disable the trace. If the trace Description
is enabled, all the issued commands are logged in the log file. A communication

101

Output

protocol can also be selected. An overview of the currently defined protocols is
shown in the table below.

Protokoll Meaning
Line Plain ASCII output

Perl The output is offered as a Perl structure that can
be easily evaluated by the Perl script using eval.

Python Like Perl, but this is a Python structure.
Serial Serialized Java objects.
Xml Outputs an xml structure.

The timeout parameter for the session can be set as a last resort. A timeout of 0
means that no timeout is active. Any number greater than 0 indicates the number
of seconds after which a session is automatically disconnected.

The second form of the alter session statement can be used by members of the group
ADMIN only. It is used to temporarily change the user and the corresponding
privileges of the session. The third form of the statements resets the user and the
privileges to their original values.

Output

This statement returns a confirmation of a successful operation.

102

alter trigger

Purpose

The purpose of the alter trigger statement is to change properties of the specified = Purpose
trigger.

Syntax

The syntax for the alter trigger statement is Syntax

alter [existing | trigger triggername on TRIGGEROBJECT | < noinverse
inverse > |
with WITHITEM {, WITHITEM}

TRIGGEROBJECT:
resource identifier {. identifier} in folderpath
| job definition folderpath
| named resource identifier {. identifier}
| object monitor objecttypename
| resource identifier {. identifier} in serverpath
WITHITEM:
< active | inactive >
| check = period
| condition = < none | string >
| < nowarn | warn >
| event=(CT_EVENT {, CT_EVENT})
| group event
| limit state = < none | statename >
| main none
| main folderpath
| < nomaster | master >
| parameter = none
| parameter = (identifier = expression {, identifier = expression})
| parent none
| parent folderpath
| rerun
| < noresume | resume in period | resume at datetime >
| single event
| state = none
| state = (< statename {, statename} |
CT_RSCSTATUSITEM {, CT_RSCSTATUSITEM} >)

103

| submit after folderpath

| submit folderpath

| submitcount = integer

| < nosuspend | suspend >
| [type =] CT_TRIGGERTYPE
| group = groupname

CT_EVENT:
< create | change | delete >

CT_RSCSTATUSITEM:
< statename any | statename statename | any statename >

CT_TRIGGERTYPE:
after final
| before final
| finish child
| immediate local
| immediate merge
| until final
| until finished
| warning

Description

Description The alter trigger statement is used to change the properties of a defined trigger.
If the existing keyword has been specified, changing an existing trigger will not
return an error.

For a detailed description of these options, refer to the create trigger statement on
page 197.

Output

Output This statement returns a confirmation of a successful operation.

104

alter user

Purpose

The purpose of the alter user statement is to change properties of the specified Purpose
user.

Syntax

The syntax for the alter user statement is Syntax

alter [existing | user username
with WITHITEM {, WITHITEM}

alter [existing | user username
ADD_DELITEM {, ADD_DELITEM}

WITHITEM:

connect type = < plain | ssl | ssl authenticated >
default group = groupname

< enable | disable >

equivalent = none

equivalent = (< username | serverpath > {, < username | serverpath >})
group = (groupname {, groupname})

parameter = none

parameter = (PARAMETERSPEC {, PARAMETERSPEC})
password = string

rawpassword = string [salt = string |

ADD_DELITEM:
add [or alter | parameter = (PARAMETERSPEC {, PARAMETERSPEC})
| < add | delete > group = (groupname {, groupname})
| alter [existing | parameter = (PARAMETERSPEC {, PARAMETERSPEC})
| delete [existing | parameter = (parmlist)

PARAMETERSPEC:
parametername = < string | number >

105

Description

Output

Description

The alter user statement is used to change the properties of a defined user. If the
existing keyword has been specified, attempting to modify a non-existent user will
not trigger an error.

For a detailed description of these options, refer to the create user statement on page
207.

The second variant of the statement is used to delete or add the user from or to the
specified groups.

Output

This statement returns a confirmation of a successful operation.

106

alter watch type

Purpose

The purpose of the alter watch type statement is to change an object class in the
object monitoring system.
Syntax

The syntax for the alter watch type statement is

alter [existing | watch type watchtypename
with WITHITEM {, WITHITEM}

WITHITEM:
parameter = (PARAMETERSPEC {, PARAMETERSPEC})

PARAMETERSPEC:
< config | value | info > parametername | = string | [submit |

Description

The alter watch type statement is required to change the definition of a Watch
Type. Parameters can always be added if no Object Types exist for the Watch Type.
If Object Types do already exist, default values are required for the config parame-
ters. If Object Instances are also present, default values have to be specified for the
info and value parameters are as well.

If any parameters are removed, they are also deleted for the associated Object Types
or Instances.

Output

This statement returns a confirmation of a successful operation.

107

Purpose

Syntax

Description

Output

4. approve commands

109

Purpose

Syntax

Description

Output

approve

Purpose

The approve command is used to approve or reject planned operator actions.

Syntax

The syntax for the approve statement is
approve id {, id} [with comment = string |
reject id {, id} [with comment = string |

Description

The approve command is used to execute planned or already executed operator
actions.
The reject command is used to reject such operator actions.
Multiple actions can be handled simultaneously by specifying a list of comma-
separated IDs.
If the Approval mode for an operation is approve, the operation is only performed
when a second person confirms this using the approve command.
The second person only requires the Approve privilege and does not necessarily
have to be authorised to perform the operation themself.
If the Approval mode for an operation is review, the operation is executed imme-
diately. The subsequent acceptance or rejection of the operation therefore only has
organisational significance.
A comment on the decision can optionally be specified. This comment will be visi-
ble in the job audit.

Output

This statement returns a confirmation of a successful operation.

110

5. cleanup commands

111

cleanup folder

Purpose
Purpose The purpose of the cleanup folder statement is to remove the contents of folder(s).
Syntax
Syntax The syntax for the cleanup folder statement is

cleanup folder folderpath {, folderpath}
[with WITHITEM {, WITHITEM} |

WITHITEM:
force
| keep =none
| keep = (OBJECTURL {, OBJECTURL})

OBJECTURL:
distribution distributionname for pool identifier {. identifier} in serverpath
| environment environmentname
| exit state definition statename
| exit state mapping mappingname
| exit state profile profilename
| exit state translation transname
| event eventname
| resource identifier {. identifier} in folderpath
| folder folderpath
| footprint footprintname
| group groupname
| interval intervalname
| job definition folderpath
| nice profile profilename
| named resource identifier {. identifier}
| object monitor objecttypename
| pool identifier {. identifier} in serverpath
| resource state definition statename
| resource state mapping mappingname
| resource state profile profilename
| scheduled event schedulepath . eventname
| schedule schedulepath
| resource identifier {. identifier} in serverpath

112

| < scope serverpath | jobserver serverpath >
| trigger triggername on TRIGGEROBJECT | < noinverse | inverse > |
| user username
| watch type watchtypename
TRIGGEROBJECT:
resource identifier {. identifier} in folderpath

| job definition folderpath

| named resource identifier {. identifier}

| object monitor objecttypename

| resource identifier {. identifier} in serverpath

Description

The cleanup folder command examines the contents of the specified folder. Each
entry that is found is checked to ascertain whether it

¢ is either mentioned in the keep option

e or it is one of the specified folders that has to be cleaned up.

The entry is deleted if none of these conditions apply. Folders and subfolders are
completely deleted (by using the “cascade” option). For a detailed description of
the drop commands that are used for deleting entries and folders, refer to page
225 (drop folder) and page 229 (drop job definition). This command is mainly in-
tended to be used in conjunction with the "dump” command. Refer to "dump
...cleanup/keep” on page 248.

folderpath can designate both a folder and a job definition.

force The force option is passed on to the drop commands to be executed.

keep The keep clause lists each entity that is not to be deleted.
If none is specified only the items listed to be cleaned up are kept. Appending
”.all” to an entry keeps that entity and every item that is contained in the entire
hierarchy below it.

Output

This statement returns a confirmation of a successful operation.

113

Description

Output

6. connect commands

115

Purpose

Syntax

Description

connect

Purpose

The purpose of the connect statement is to authenticate a user to the server.

Syntax

The syntax for the connect statement is

connect username identified by string | with WITHITEM {, WITHITEM} |

WITHITEM:

command = (sdms-command {; sdms-commandy})
method = string

protocol = PROTOCOL

session = string

timeout = integer

token = string

< trace | notrace >

trace level = integer

PROTOCOL:

json [ZERO TERMINATED |
line

perl [ZERO TERMINATED]
python [ZERO TERMINATED |
serial

xml

Description

The connect command is used to authenticate the connected process on the server
to. A communication protocol can be optionally specified. The default protocol is

line.

The selected protocol defines the output format. All protocols except for serial

return ASCII output. The protocol serial returns a serialized Java object.

An executable command can also be returned when the connection is established.
In this case, the output of the accompanying command is used as the output for
the connect command. If the command fails, but the connect was successful, the

connection remains active.
An example for all protocols except the serial protocol is given below.

116

line protocol The line protocol only returns an ASCII text as the result from a
command.

connect donald identified by 'duck' with protocol = line;
Connect

CONNECT_TIME : 19 Jan 2005 11:12:43 GMT

Connected

SDMS>

XML protocol The XML protocol returns an XML structure as the result from a
command.

connect donald identified by 'duck' with protocol = xml;
<OUTPUT>

<DATA>

<TITLE>Connect</TITLE>

<RECORD>

<CONNECT_TIME>19 Jan 2005 11:15:16 GMT</CONNECT_TIME></RECORD>
</DATA>

<FEEDBACK>Connected</FEEDBACK>

</OUTPUT>

python protocol The python protocol returns a Python structure that can be
valuated using the Python eval function.

connect donald identified by 'duck' with protocol = python;
{

'DATA'

{

'TITLE' : 'Connect',

'DESC'" : [

'CONNECT_TIME'

]I

'RECORD" : {

'"CONNECT_TIME' : '19 Jan 2005 11:16:08 GMT'}
}

, '"FEEDBACK' : 'Connected'

perl protocol The perl protocol returns a Perl structure that can be valuated
using the Perl eval function.

117

connect donald identified by 'duck' with protocol = perl;
{

'DATA' =>

{

'"TITLE' => 'Connect',

'DESC' => [

'CONNECT_TIME'

]l

"RECORD' => {

'"CONNECT_TIME' => '19 Jan 2005 11:19:19 GMT'}
}

, '"FEEDBACK' => 'Connected'

}

Output

Output This statement returns a confirmation of a successful operation.

118

7. copy commands

119

Purpose

Syntax

Description

Output

copy distribution

Purpose
The purpose of the copy distribution statement is to make a copy of the distribu-
tion with another name.
Syntax
The syntax for the copy distribution statement is
copy distribution distributionname for pool identifier {. identifier} in
serverpath to distributionname

Description

The copy distribution statement is used to copy distributions. The default dis-
tribution created with the create pool statement can be addressed under the name
"default”.

Output

This statement returns a confirmation of a successful operation.

120

copy folder

Purpose

The purpose of the copy folder statement is to copy a folder including all contents Purpose
to some other place in the folder hierarchy.

Syntax

The syntax for the copy folder statement is Syntax
copy FOLDER_OR_JOB {, FOLDER_OR_JOB} to folderpath

copy FOLDER_OR_JOB {, FOLDER_OR_JOB} to foldername

FOLDER_OR_JOB:
[< folder folderpath | job definition folderpath > |

Description

If a folder has been copied, every object in the folder is copied as well. If there are Description
any relationships between objects that were copied as the result of a copy folder ope-
ration (e.g. dependencies, children, triggers, etc.), these are changed accordingly
and mapped to the resulting objects from the copy.

For example, if a folder SYSTEM.X.F containing two jobs A and B, and with SYS-
TEM.X.EB dependent upon SYSTEM.X.E.A, is copied to the folder SYSTEM.Y, the
newly created job SYSTEM.Y.EB will be dependent upon the newly created job
SYSTEM.Y.FA.

Note that if the jobs were copied using a copy job definition command, the new job
SYSTEM.Y.EB would still be dependent upon SYSTEM.X.E.A. This may not corre-
spond to the user’s view.

Output

This statement returns a confirmation of a successful operation. Output

121

Purpose

Syntax

Description

Output

copy named resource

Purpose

The purpose of the copy named resource statement is to copy a named resource
into another category.
Syntax

The syntax for the copy named resource statement is
copy named resource identifier {. identifier} to identifier {. identifier}
copy named resource identifier {. identifier} to resourcename

Description

The copy named resource command is used to save a copy of a Named Resource or
an entire category.
If the specified “target resourcepath” already exists as a category, a Named Re-
source or category with the same name as the source object is created within this
category.
If the specified “target resourcepath” already exists as a Named Resource, this is
regarded as an error.

Output

This statement returns a confirmation of a successful operation.

122

copy scope

Purpose

The purpose of the copy scope statement is to copy a scope including all contents Purpose
to some other place within the scope hierarchy.

Syntax

The syntax for the copy scope statement is Syntax
copy < scope serverpath | jobserver serverpath > to serverpath
copy < scope serverpath | jobserver serverpath > to scopename

Description

The copy scope command is used to save a copy of entire scopes. This copy also Description
includes the resource and parameter definitions.
If the specified “target servicepath” already exists as a scope, a scope with the same
name as the source object is created within this category.
If the specified "target serverpath” already exists as a jobserver, this is regarded as
an error.
Since a jobserver is only regarded as a special type of scope, it is possible to copy
jobservers using this command. In this case, this command is identical to the copy
jobserver command.

Output

This statement returns a confirmation of a successful operation. Output

123

8. create commands

125

create comment

Purpose
Purpose The purpose of the create comment statement is to store a comment for the speci-
tied object.
Syntax
Syntax The syntax for the create comment statement is

create [or alter | comment on OBJECTURL
with CC_WITHITEM

OBJECTURL:
distribution distributionname for pool identifier {. identifier} in serverpath
| environment environmentname
| exit state definition statename
| exit state mapping mappingname
| exit state profile profilename
| exit state translation transname
| event eventname
| resource identifier {. identifier} in folderpath
| folder folderpath
| footprint footprintname
| group groupname
| interval intervalname
| job definition folderpath
| job jobid
| nice profile profilename
| named resource identifier {. identifier}
| object monitor objecttypename
| parameter parametername of PARAM_LOC
| pool identifier {. identifier} in serverpath
| resource state definition statename
| resource state mapping mappingname
| resource state profile profilename
| scheduled event schedulepath . eventname
| schedule schedulepath
| resource identifier {. identifier} in serverpath
| < scope serverpath | jobserver serverpath >
| trigger triggername on TRIGGEROBJECT [< noinverse | inverse > |
| user username

E =

126

| watch type watchtypename

CC_WITHITEM:
CC_TEXTITEM {, CC_TEXTITEM}
| url = string

PARAM_LOC:
folder folderpath
| job definition folderpath
| named resource identifier {. identifier}
| < scope serverpath | jobserver serverpath >

TRIGGEROBJECT:
resource identifier {. identifier} in folderpath
| job definition folderpath
| named resource identifier {. identifier}
| object monitor objecttypename
| resource identifier {. identifier} in serverpath
CC_TEXTITEM:
tag = < none | string >, text = string
| text = string

Description

The create comment statement is used to create the condensed description or the
URL of the description for the object to be commented on.
The optional keyword or alter is used to update the comment (if one exists). If it is
not specified, the presence of a comment will trigger an error.

Output

This statement returns a confirmation of a successful operation.

127

Description

Output

create distribution

Purpose

Purpose The purpose of the create distribution statement is to create an alternate distribu-
tion of resource amounts for a resource pool.

Syntax

Syntax The syntax for the create distribution statement is

create | or alter | distribution distributionname for pool identifier {.
identifier} in serverpath
with cD_wiITH

CD_WITH:
resource = none
resource = (CPL_RESOURCE {, CPL_RESOURCE})

CPL_RESOURCE:
CPL_RES_ITEM { CPL_RES_ITEM}

CPL_RES_ITEM:
< managed | not managed >
| resource identifier {. identifier} in folderpath
| freepct = integer
| maxpct = integer
| minpct = integer
| nominalpct = integer
| pool identifier {. identifier} in serverpath
| resource identifier {. identifier} in serverpath

Description

Description The create distribution statement is used to define alternative distributions of
amounts within a Resource Pool. These distributions can then be subsequently
activated using the alter pool statement (see page 87). The single options equate to
the matching options in the create pool statement. See also page 179.

If the keyword or alter is specified, this will not trigger an error if a distribution
already exists under the specified name. However, in this case the definition of the
stated distribution will be modified accordingly.

The name “default” is reserved regardless of case and therefore cannot be used.

128

Output

This statement returns a confirmation of a successful operation. Output

129

Purpose

Syntax

Description

Output

create environment

Purpose

The purpose of the create environment statement is to define a set of static named
resources which are needed in the scope a job wants to run.

Syntax

The syntax for the create environment statement is

create [or alter | environment environmentname | with
ENV_WITH_ITEM |

ENV_WITH_ITEM:
resource = none
resource = (ENV_RESOURCE {, ENV_RESOURCE})

ENV_RESOURCE:
identifier {. identifier} [< condition = string | condition = none > |

Description

The create environment statement is used to define a series of Static Resource Re-
quests which describe the requisite environment that a job needs. Since the envi-
ronments cannot be created by ordinary users, and jobs have to describe the envi-
ronment that they require to run, environments can be used to force jobs to use a
specific jobserver.

Resources The Resources clause is used to specify the Required (Static) Re-
sources. Specified resources that are not static will trigger an error. Since only
static resources are specified, no further information is required. It is permissible to
specify an empty environment (an environment without resource requests). This is
not advisable, though, because it means a loss of control.

Output

This statement returns a confirmation of a successful operation.

130

create event

Purpose

The purpose of the create event statement is to define an action which can be Purpose
executed by the time scheduling engine.

Syntax

The syntax for the create event statement is Syntax

create [or alter | event eventname
with EVENT_WITHITEM {, EVENT_WITHITEM}

EVENT_WITHITEM:
action =
submit folderpath [with parameter = (PARAM {, PARAM}) |
| group = groupname

PARAM:
parametername = < string | number >

Description

The create event statement is used to define an action that can be scheduled by Description
the Time Scheduling module. The defined action is the submission of a master
submittable job or batch.

action The submit part of the statement is a restricted variant of the submit
command (see page 510).

group The group option is used to set the owner group to the specified value.
The user must belong to this group unless he belongs to the ADMIN privileged
group. In this case, any group can be specified.

Output

This statement returns a confirmation of a successful operation. Output

131

Purpose

Syntax

Description

Output

Example

create exit state definition

Purpose

The purpose of the create exit state definition statement is to create a symbolic
name for the state of a job.

Syntax

The syntax for the create exit state definition statement is
create | or alter | exit state definition statename

Description

The create exit state definition statement is used to create a symbolic name for the
Exit State of a job, milestone or batch.
The optional keyword or alter is used to prevent error messages from being trig-
gered and the current transaction from being aborted if an Exit State Definition
already exists. This is particularly useful in conjunction with multicommands. If it is
not specified, the existence of an Exit State Definition with the specified name will
trigger an error.

Output

This statement returns a confirmation of a successful operation.

Example

In the following examples, symbolic names have been created for Job States.

create exit state definition success;
create exit state definition error;
create exit state definition reached;
create exit state definition warning;
create exit state definition wait;

create exit state definition skip;

create exit state definition unreachable;

132

create exit state mapping

Purpose

The purpose of the create exit state mapping statement is to create a mapping bet-
ween the numerical exit code of a process and a symbolic exit state.

Syntax

The syntax for the create exit state mapping statement is

create | or alter | exit state mapping mappingname
with map = (statename {, signed_integer , statename })

Description

The create exit state mapping statement defines the mapping of Exit Codes to log-
ical Exit States. The simplest form of this statement only specifies one Exit State.
This means that the job automatically reaches this Exit State after it has finished
regardless of its Exit Code. More complex definitions specify more than one Exit
State and at least one delimitation.

Output

This statement returns a confirmation of a successful operation.

Example

The example below shows a relatively simple, yet realistic mapping of Exit Codes
to logical Exit States.
The statement

create exit state mapping examplel
with map = (error,

0, success,

1, warning,

4, error);

defines the following mapping;:

Exit Code Exit Code Resultant
Range from Rangeto Exit State

—00 -1 error
0 0 success
1 3 warning
4 00 error

133

Purpose

Syntax

Description

Output

Example

create exit state profile

Purpose
Purpose The purpose of the create exit state profile statement is to define a set of valid exit
states.
Syntax
Syntax The syntax for the create exit state profile statement is

create [or alter | exit state profile profilename
with WITHITEM {, WITHITEM}

WITHITEM:
default mapping = < none | mappingname >
| force
| state = (ESP_STATE {, ESP_STATE})

ESP_STATE:
statename < final | restartable | pending > [OPTION { OPTION}]

OPTION:
batch default
| broken
| dependency default
| disable
| unreachable

Description
Description The create exit state profile statement is used to define a quantity of valid Exit States

for a job, milestone or batch.

default mapping With the default mapping clause it is possible to define which
Exit State Mapping is to be used if no other mapping has been specified. This makes
it considerably easier to create jobs.

force While an Exit State Profile is being created, the force option has no effect
and is ignored. If or alter is specified and the Exit State Profile that you want to
create already exists, the force option delays the integrity check until later.

134

state The state clause defines which Exit State Profiles are valid within this
definition. Each Exit State Definition must be classified as being final, restartable
or pending. If a job has reached the final state it can no longer be started, which
means that the state can no longer change. If a job has reached the restartable state,
it can be started again. This means that the state of such a job can change as well.
pending means that a job cannot be restarted, but it is not final either. The state
must be be set externally.
The order in which the Exit States are defined is relevant. The first specified Exit
State has the highest preference, while the most recently specified Exit State has the
lowest preference. Normally, final states are specified later than restartable states.
A state’s preference is used to decide which state is visible when several different
Exit States of children are merged.
Just one Exit State can be declared as being an unreachable state. This means that
a job, batch or milestone with this profile is mapped to the specified state as soon
as it has become unreachable. This Exit State must be final.
A maximum of one Exit State within a profile can be designated as being a broken
state. This means that a job will reach this state as soon as it has switched to the
error or broken_finished state. This can be handled using a trigger. The Exit State
that is defined as being a broken state must be restartable.
A maximum of one state can be declared as being a batch default state. An empty
batch assumes this status. This allows for an explicit deviation from the standard
behaviour. If no status is designated as being batch default, an empty batch will
automatically assume the final status with the lowest preference that is not desig-
nated as being unreachable. If such a status does not exist, the unreachable state
is also considered a candidate.
Any number of Final States can be designated as dependency default states. De-
pendencies that define a default dependency are fulfilled if the required job as-
sumes one of the states designated as dependency default.

Output

This statement returns a confirmation of a successful operation. Output

Example

These examples show how the Exit State Profiles example_1 and example_2 are Example
created.

In the first, very simple example, the Exit State of success is to be a Final State.

create exit state profile example_1
with
state = (success final);

135

In the second example, the Exit State failure is defined as being restartable. This
state has a higher priority than the (final) state success and must therefore be listed
as the first state.

create exit state profile example_2
with
state = (failure restartable,
success final

)

136

create exit state translation

Purpose

The purpose of the create exit state translation statement is to create a translation
between child and parent exit states.

Syntax

The syntax for the create exit state translation statement is

create [or alter | exit state translation transname
with translation = (statename to statename {, statename to statename}

)

Description

The create exit state translation statement is used to define a translation between
two Exit State Profiles. Such a translation can be used (but does not have to be) in
parent-child relationships if the two involved Exit State Profiles are incompatible.
The default translation is the identity. This means that Exit States are translated to
Exit States of the same name unless specified otherwise.

It is not possible to translate a Final State to a Restartable State.

If the Exit State translation already exists and the ”or alter” keyword has been
specified, the specified Exit State translation is changed. Otherwise, an already
existing Exit State translation with the same name will trigger an error.

Output

This statement returns a confirmation of a successful operation.

Example

In the following example, the Exit State of the child warning is translated to the
Exit State of the parent skip

create exit state translation examplel
with translation = (warning to skip);

137

Purpose

Syntax

Description

Output

Example

create folder

Purpose

Purpose The purpose of the create folder statement is to create a container for job definitions
and/or other folders.

Syntax

Syntax The syntax for the create folder statement is

create [or alter | folder folderpath [with WITHITEM {, WITHITEM}]

WITHITEM:
environment = < none | environmentname >
| group = groupname [cascade]
| inherit grant = none
| inherit grant = (PRIVILEGE {, PRIVILEGE})
| parameter = none
| parameter = (parametername = string {, parametername = string})

PRIVILEGE:
approve
| cancel
| clear warning
| clone
| create content
| drop
| edit [parameter |
| enable
| execute
| ignore resource
| ignore dependency
| kill
| monitor
| operate
| priority
| rerun
| resource
| setjob status
| set state
| submit
| suspend

138

| use
| view
Description
This command creates a folder and has the following options:
environment If an environment has been assigned to a folder, every job in the

folder and its subfolders will inherit all the Resource Requests from the Environ-
ment Definition.

group The group option is used to set the owner group to the specified value.
The user must belong to this group unless he belongs to the ADMIN privileged
group. In this case, any group can be specified.

parameter The parameter option can be used to define key/value pairs for the
folder. The complete list of parameters must be specified within a command.

inherit grant The inherit grants clause allows you to define which privileges
are to be inherited through the hierarchy. If this clause is not specified, all privileges
are inherited by default.

Output

This statement returns a confirmation of a successful operation.

139

Description

Output

create footprint

Purpose

Purpose The purpose of the create footprint statement is to create a set of often used system
resource requirements.

Syntax

Syntax The syntax for the create footprint statement is

create [or alter | footprint footprintname
with resource = (REQUIREMENT {, REQUIREMENT})

REQUIREMENT:
ITEM { ITEM}

ITEM:
amount = integer
| < nokeep | keep | keep final >
| identifier {. identifier}

Description

Description The create footprint command creates a set of Resource Requests which can be re-
used. The Required Resources are all System Resources. The Required Resources
are described by their names, a set with zero by default, and optionally a keep
option.

keep The keep option in a Resource Request defines the time when the resource
is released. The keep option is valid for both System and Synchronizing Resources.
There are three possible values. Their meanings are explained in the table below:

Value Meaning

nokeep The resource is released at the end of the job. This is
the default behaviour.

keep The resource is released as soon as the job has reached
the Final State.

keep final | The resource is released when the job and all its chil-
dren are final.

140

amount The amount option is only valid with requests for Named Resources
of the type System or Synchronizing. The amount in a Resource Request expresses
how many units of the Required Resource are allocated.

Output

This statement returns a confirmation of a successful operation. Output

141

Purpose

Syntax

Description

Output

create group

Purpose

The purpose of the create group statement is to create an object to which privileges
can be granted.

Syntax

The syntax for the create group statement is

create [or alter | group groupname [with WITHITEM]

WITHITEM:
user = none
| user = (username {, username})
Description

The create group statement is used to create a group. If the ”or alter” keyword
has been specified, an already existing group is changed. Otherwise, an already
existing group is considered an error.

user The user clause is used to specify which users are group members.

Output

This statement returns a confirmation of a successful operation.

142

create interval

Purpose

The purpose of the create interval statement is to define a periodic or aperiodic Purpose
pattern at which events can, must not, be triggered.

Syntax

The syntax for the create interval statement is Syntax

create | or alter | interval intervalname [with WITHITEM {, WITHITEM} |

WITHITEM:
base = < none | period >
| dispatch = none
| dispatch = (IVAL_DISPATCHITEM {, IVAL_DISPATCHITEM})
| duration = < none | period >
| embedded = < none | CINTERVALNAME >
| endtime = < none | datetime >
| filter = none
| filter = (CINTERVALNAME {, CINTERVALNAME})
| < noinverse | inverse >
| selection = none
| selection = (IVAL_SELITEM {, IVAL_SELITEM})
| starttime = < none | datetime >
| synctime = datetime
| group = groupname

IVAL_DISPATCHITEM:
dispatchname < active | inactive > IVAL_DISPATCHDEF

CINTERVALNAME:
(intervalname
with WITHITEM {, WITHITEM})
| intervalname

IVAL_SELITEM:
< signed_integer | datetime | datetime - datetime >

143

Description

IVAL_DISPATCHDEF:
none CINTERVALNAME < enable | disable >
| CINTERVALNAME CINTERVALNAME < enable | disable >
| CINTERVALNAME < enable | disable >

Description

The intervals are the core of the Time Scheduling. They can regarded as block
patterns. These patterns can be periodic or non-periodic. Within a period (Base)
which, in the case of a non-periodic interval, has a length infinity (c0), there are
blocks of a predetermined length Duration. The last block may be incomplete if the
period length is not an integer multiple of the duration is. The duration can also
have a length oo. This means that the blocks have the same length as the periods.

Duration Block
=

HEE L[]

Periode

Figure 8.1.: How periods and blocks are displayed

It is not necessary for all of the blocks to be actually present. You can choose which
blocks are present. This choice can be made by specifying the block number relative
to the beginning or end of a period (1,2,3 or —1, —2, —3) or by stating “from - to”
(all days between 3.4. and 7.6.).

This results in complex patterns as shown in Figure 8.2.

nnlinlnuSnlnnit

Figure 8.2.: A more complex pattern

The selection is 1-based, i.e. the first block has the number 1. The last block is
addressed with the number -1. This means that a block 0 does not exist.
Essentially, an interval can be described using the following parameters: Base fre-
quency (period length), duration and selection. Since an interval does not neces-
sarily always have to be valid, a start and end time can still be specified.

Infinite intervals With a non-periodic interval without a duration (infinity), the
start time plays a special role: it then defines the only positive edge of this interval.
Similarly, an end time defines the only negative edge.

144

When a selection is made, this respectively results in blocks being created. The
selection ”-0315T18:40” creates a block from 18:40 to 18:41 every year on March 15.
Selecting blocks using the position (first, second, etc.) is, of course, nonsense. This
is also ignored for infinite intervals.

Inverse If, for example, the time between Christmas and New Year has been

positively defined for a particular purpose, at the moment there is no way to easily
define the complementary time. In this example this is not a serious problem, but
with more complex patterns this incapability will result in complex and error-prone
dual definitions.
For this reason, an Inverse flag has been implemented which causes the specified
selection list to be interpreted complementarily, i.e. only those blocks that would
not have been chosen without a set invert flag are selected. In the case of the last
working day of the month, the inverse flag is set on all working days except for the
last working day of that month.

Filter The selection of blocks can be restricted even further. For example, if
you have defined an interval “day of the month” (i.e. the base is one month, the
duration is one day) and then selected the second block, such an interval would
have a block on the respective second day of a month. If you want to define this
only for the odd months (January, March, May, etc.), that would not be possible
without a filter function because of the leap years.

The solution to the problem is to define a further interval (month of the year) with
the selection 1,3,5,7,9,11. This interval is then specified as a filter for the first
interval.

Here, the first interval only shows a block if the second interval also shows a block
at that “time”.

If several intervals have been specified as a filter, it is sufficient for one of these
intervals to have a block at the required time (OR). To map an AND relationship
between the filter intervals, the filter intervals are created as a chain (A filters B C
filters, etc.). The order of the filters is not important.

Embedded Unfortunately, the world is not always so simple. In particular, it
is not inconsequential whether you first perform an operation and then make a
selection, or if you have to choose first and then perform the operation. In other
words, there is a big difference if you
talking about the last day of the month - if this is a working day - or about the last
working day of the month.
We obviously also want to include this possibility for making a differentiation in
our model. An embedding functionality has been implemented for this purpose.
Here, we begin by taking over all the parameters for the embedded interval. This
is followed by an evaluation of the selection list. Although it is allowed, select-
ing a ”from - to” period is obviously senseless since this functionality can also be

145

achieved with simple multiplication. Much more interesting is the possibility of
making a relative selection. If the working days in a month are embedded and then
the day —1 is selected, for instance, overall we now have an interval that defines
the last working day of each month. If, on the other hand, the interval with the
working days in a month is multiplied by an interval that returns the last day of a
month, we will only get a hit if the last day of the month is a working day.
Embedding can therefore also be understood as follows: When selecting the blocks,
not all of the embedded blocks are considered (and above all counted), but only the
active blocks.

Synchronisation What have still not been taken into consideration are those

situations involving multiple single periods. A period of 40 days, for example,
could have its rising edge at midnight (00:00) on any day. That is why a synchro-
nisation time (synctime) has been implemented which selects the earliest edge that
is > this point in time. If no such time has been explicitly specified, the date when
the definition was created (create) is used.
Fundamentally, the first block of a period initially starts at its beginning. In cases
where this is not possible (period = oo, duration > period, Period XOR Duration
have the unit “week”), the beginning of the period is used as the synchronisation
time. If this is not possible either (period = o), the normal synchronisation time is
used. The result of this approach is that the first block of a period may be incom-
plete as well (and is then never active).

Dispatcher Although the previous syntax components are extremely powerful
and can describe practically any rhythm, their usage is not always intuitive. This is
not problematic when the interval is created, but it can become a problem during
later maintenance.

The Dispatcher allows the user to develop interval definitions which are much eas-
ier to understand.

As an example, let us assume that a job is to be started at 10:00 on Mondays, but at
09:00 on the other days of the week.

First of all, we develop an interval that is triggered at 10:00 on Mondays:

create or alter interval MONDAY10
with

base = none,

duration = none,
selection = ('T10:00"),
filter = (

(MONDAYS

with
base = 1 week,

duration = 1 day,
selection = (1)

)

)i

146

The possibility to define filters and embedded intervals “inline” can result in a

streamlined definition here.

The interval that is triggered at 09:00 on the other days of the week looks similar to

this:

create or alter interval WEEKDAYO09
with
base = none,

duration = none,
selection = ('T09:00"),
filter = (

(WEEKDAYS

with
base = 1 week,

duration = 1 day,
selection = (2, 3, 4, 5)
)

)

The combined interval without a Dispatcher therefore looks like this:

create or alter interval MO10_DI_FRO9

with

base = none,

duration = none,

selection = ('T09:00', 'T10:00"),
filter = (MONDAY10, WEEKDAYO09);

The two possible times are selected and both filters are evaluated. On Mondays,

only the time 10:00 is let through, on other days only the time 9:00.

The same functionality, but now with a Dispatcher, is easier to understand:

create or alter interval D_MO10_DI_FR0O9

with

base = none,
duration = none,
filter = none,
selection = none,
dispatch = (
MONDAY_RULE
active

(MONDAYS

with
base = 1 week,
duration = 1 day,
selection = (1)

)
(MONDAY_TIME

with
base = none,
duration = none,

147

selection = ('T10:00")
)

enable,

WEEKDAY_RULE

active

(WEEKDAYS

with

base = 1 week,
duration = 1 day,
selection = (2, 3, 4, 5)
)

(WEEKDAY_TIME

with

base = none,

duration = none,
selection = ('T09:00")
)

enable

)i

The requirement is clearly presented in this form, easy to understand and just as
easy to maintain.

The requirement is clearly presented in this form, easy to understand and just as
easy to maintain.

A Dispatcher definition is relatively simple. First of all, it consists of a list of rules.
The order of these rules is meaningful. If two or more rules are "responsible”, the
tirst rule in the list "wins".

In the example above, the WEEKDAYS interval could be changed so that the Mon-
day is selected:

WEEKDAY_RULE

active

(WEEKDAYS

with

base = 1 week,

duration = 1 day,

selection = (1, 2, 3, 4, 5)

)

But since the first rule MONDAY_RULE is already handling the Monday, the change
would not have any effect.

A Dispatch rule consists of 5 parts. It begins with a name that must comply with the
usual rules for an identifier. The name has no implication, and essentially serves as
a way of clarifying the idea behind the rule. The name (as the name of a rule) must
be unique within the Dispatcher.

The next part is the active flag. If it is set to inactive, no blocks are generated,
respectively all blocks are filtered out. If it is set to active, the Interval filter is
valuated.

148

The third part is the “Select Interval”. This interval defines the times at which the
rule is valid. If the rule is valid, the Interval value is valuated provided that the
rule is marked as being active.

If the keyword none is entered as the Select Interval, this equates to an infinite
interval without any other properties. In turn, this basically means that it is always
valid.

The fourth part is the “Filter Interval”. This interval does the actual work. In the
example above, it creates a block with a start time of 09:00 (Mondays).

The Filter Interval can be omitted. Here, too, this equates to an infinite interval
without any other properties. As a driver there are no blocks; as a filter it lets
everything through.

The combination of none as Select Interval and omitting the Filter Interval is not
permissible.

The last part is the enable flag. This switch can be used to enable or disable rules.
If a rule is disabled, it is ignored.

Output

This statement returns a confirmation of a successful operation.

149

Output

create job definition

Purpose

Purpose The purpose of the create job definition statement is to create a scheduling entity
object which can be submitted, standalone or as part of a larger hierarchy.

Syntax

Syntax The syntax for the create job definition statement is

create | or alter | job definition folderpath . jobname
with WITHITEM {, WITHITEM}

WITHITEM:
aging = < none | period >
| approval = none
| approval = (OPERATE_APPROVAL {, OPERATE_APPROVAL})
| children = none
| children = (JOB_CHILDDEF {, JOB_CHILDDEF})
| dependency mode = < all | any >
| environment = environmentname
| errlog = < none | filespec | < notrunc | trunc >] >
| footprint = < none | footprintname >
| inherit grant = none
| inherit grant = (PRIVILEGE {, PRIVILEGE})
| kill program = < none | string >
| logfile = < none | filespec | < notrunc | trunc > | >
| mapping = < none | mappingname >
| < nomaster | master >
| min priority =
< none | integer >
| nicevalue = < none | signed_integer >
| parameter = none
| parameter = (JOB_PARAMETER {, JOB_PARAMETER})
| priority = < none | signed_integer >
| profile = profilename
| required = none
| required = (JOB_REQUIRED f{, JOB_REQUIRED})
| rerun program = < none | string >
| resource = none
| resource = (REQUIREMENT {, REQUIREMENT})
| < noresume | resume in period | resume at datetime >

150

runtime = integer

runtime final = integer
run program = < none | string >
< nosuspend | suspend >

timeout = none

timeout = period state statename
type = < job | milestone | batch >

group = groupname

workdir = < none | string >

OPERATE_APPROVAL:

OPERATE_PRIV APPROVAL_MODE | leading |

JOB_CHILDDEF:
JCD_ITEM { JCD_ITEM}

PRIVILEGE:

approve
cancel

clear warning
clone

create content
drop

edit [parameter]
enable

execute

ignore resource
ignore dependency
kill

monitor

operate

priority

rerun

resource

set job status

set state

submit

suspend

use

view

151

152

JOB_PARAMETER:
parametername [(id)] < [JP_WITHITEM | [default = string | | JP_NONDEFWITH >
[local | [< export = parametername | export = none > |

JOB_REQUIRED:
JRQ_ITEM { JRQ_ITEM)}

REQUIREMENT:
JRD_ITEM { JRD_ITEM}

OPERATE_PRIV:
cancel
| clear warning
| clone
| edit parameter
| enable
| ignore resource
| ignore dependency
| kill
| priority
| rerun
| setjob status
| set state
| suspend

APPROVAL_MODE:
approve

| default

| master

| no

| parent

| review

JCD_ITEM:
alias = < none | aliasname >
| condition = < none | string >
| < enable | disable >
| folderpath . jobname
| ignore dependency = none
| ignore dependency = (dependencyname {, dependencyname})

interval = < none | intervalname >
< childsuspend | suspend | nosuspend >

merge mode = < nomerge | merge local | merge global | failure >

mode = < and | or >

nicevalue = < none | signed_integer >

priority = < none | signed_integer >

< noresume | resume in period | resume at datetime >
< static | dynamic >

translation = < none | transname >

JP_WITHITEM:

import [unresolved |

parameter

reference child folderpath (parametername)

reference folderpath (parametername)

reference resource identifier {. identifier} (parametername)
result

JP_NONDEFWITH:

constant = string
JP_AGGFUNCTION (parametername)

JRQ_ITEM:

condition = < none | string >
dependency dependencyname
expired = < none | signed_period_rj >
folderpath . jobname

mode = < all final | job final >
resolve = < internal | external | both >
select condition = < none | string >
state = none

state = (JRQ_REQ_STATE {, JRQ_REQ_STATE})
state = all reachable

state = default

state = unreachable

unresolved = JRQ_UNRESOLVED

JRD_ITEM:

amount = integer
expired = < none | signed_period >

153

Description

< nokeep | keep | keep final >
condition = < none | string >
lockmode = LOCKMODE

nosticky

identifier {. identifier}

state = none

state = (statename {, statename})
state mapping = < none | rsmname >
sticky

[(< identifier | folderpath | identifier , folderpath | folderpath , identifier >) |

JP_AGGFUNCTION:

avg
count
max
min
sum

JRQ_REQ_STATE:
statename [< condition = string | condition = none > |

JRQ_UNRESOLVED:

defer

defer ignore
error

ignore
suspend

LOCKMODE:

Description

This command creates or (optionally) modifies job, batch or milestone defini-

tions.

Asjobs, batches and milestones have a lot in common, we usually use the following
general technical term "Scheduling Entity" whenever the behaviour is the same for

154

all three types of Job Definition. The expressions "Job", "Batch" and "Milestone" are
used for Scheduling Entities of the corresponding type Job, Batch and Milestone.
If the "or alter" modifier is used, the command will alter this according to the spec-
ified options if a scheduling entity with the same name already exists.

aging The aging describes how quickly the priority is upgraded.

approval The Approval System allows a 4-eyes principle (approval) or at least
a subsequent review to be activated for all important operator actions (cancel, re-
run, enable/disable, set state, ignore dependency, ignore resource, clone, edit pa-
rameter, kill and set job state).
An approval is considered to be more restrictive than a review, as with an approval
the operation is only carried out after it has been approved by an authorised person,
whereas a review only ever takes place after the operation has been carried out.
This can be activated for the entire workflow or just for parts of it. The behaviour
is defined by means of an Approval mode and a Leading flag per operation.
The following Approval modes can be used:

Approval mode Description

APPROVE The action must be approved by an authorised
person.

PARENT The setting for the parent is taken over.

MASTER The setting for the master is taken over if a more

restrictive setting of a leading parent does not
exist. This is the default behaviour.

REVIEW After the action has been performed, a review
is requested unless a more restrictive setting ex-
ists.

NO No restriction unless a more restrictive setting

of a leading parent exists.
If no explicit setting is made at master level, the NO setting applies here. This
means that the Approval System is normally not active.
If Approval (or Review) mode is set for a job or batch without a Leading flag, this
only has an effect on the job or batch itself as well as on all children that have set
PARENT as the mode.
Setting the Leading flag means that the setting of the parent cannot be ignored. It
is taken over unless a more restrictive setting applies.
Ultimately, configuring the system is simple and requires little effort. If no ap-
provals or reviews are required, nothing needs to be done. If approvals or reviews
are required for an entire workflow, the desired mode is set at master level with a
Leading flag. If an approval or review is required for a part of the workflow, this
is set at parent level with a Leading flag. Individual objects can be given their own
setting. The Leading flag causes all objects further down in the hierarchy to take

155

over at least the setting of the parent. If the Leading flag is missing, the setting is
only passed on to direct children that have specified the PARENT mode.

children The Children section of a job definition statement defines a list of child
objects and is used to build up a hierarchy that enables the modelling of complex
job structures.

Whenever a Scheduling Entity is submitted, all the static children are recursively
submitted.

In addition, children that are not static can be submitted during the execution be a
Running Job or Trigger.

The children are then specified using a comma-separated list of Scheduling Entity
path names and additional properties.

The properties of the Child Definitions are described below:

ALIAS This option allows the implementation of the submitted jobs to be kept in-
dependent of the folder structure, and it will function regardless of whether objects
are moved within the folder structure.

The alias for a Child Definition is only used when jobs submit dynamic children.

ENABLE In the parent-child relationship, you can specify whether a child is to be
enabled (default) or disabled. This can either be set unconditionally or dependent
upon the time of the submit or the result of a condition, or even both.

If an interval is specified, the job will be enabled if the submit time would be let
through if the interval were to be used as a filter.

If a job is disabled, it will behave like an empty batch. As soon as all the dependen-
cies have been fulfilled, the job assumes the Exit Status, which is final and the batch
default, or the Final Status with the lowest preference and which can be attained
via an Exit Status Mapping.

IGNORE DEPENDENCY Dependencies of parent jobs are normally inherited by their
children. In some rare situations this is undesirable. In this case the ignore depen-
dency option can be used to ignore such dependencies.

MERGE MODE A single Scheduling Entity can be used as a child of more than one
Parent Scheduling Entity. If two or more such parents are part of a Master Run,
the same children are repeatedly instantiated within this Master Run. This is not
always a desirable situation. Setting the Merge Mode controls how the system
handles this scenario.

The following table gives an overview of the possible Merge Modes and their mean-
ings:

156

merge mode | Description

nomerge A duplicate instance of the Scheduling Entity is cre-
ated. This is the default behaviour.

merge global | A duplicate instance is not created. A link is created
between the Parent Submitted Entity and the already
existing Child Submitted Entity.

merge local | Like Merge Global, but only Submitted Entities that
were created in a single submit are merged.

failure The submit attempting to create a duplicate Submit-
ted Entity fails.

NICEVALUE The nicevalue defines an offset of the priority used to calculate the
priorities of the child and its children. Values between -100 and 100 are permitted.

PRIORITY The specified priority in a Child Definition overwrites the priority of the
Child Scheduling Entity Definition. Values between 0 (high priority) and 100 (low
priority) are permitted.

TRANSLATION Setting the Exit State Translation for a child results in the Exit State
of the child being translated to an Exit State which is merged in the resultant Exit
State of the Parent Submitted Entity.

If no translation is specified, a Child State that is not at the same time a valid Parent
State is ignored.

If a translation has been specified, all the Child States have to translated to a valid
Parent State.

SUSPEND CLAUSE The child suspend clause defines whether a new Submitted Job
is suspended in the context of this Child Definition.

The table below shows the possible values and their meaning regarding the sus-
pend clause:

suspend clause | Description

suspend The child is suspended regardless of the value of the
suspend flag specified in the Child Scheduling Enti-
ties.

nosuspend The child is not suspended regardless of the value

of the suspend flag specified in the Child Scheduling
Entities Definition.

childsuspend | The child is suspended if the suspended flag has been
set in the Child Scheduling Entity.

If suspend has been specified, a resume clause can optionally be given as well
which triggers an automatic resume at the specified time or at the end of the speci-
tied interval.

157

The submit time is taken as the reference for partially qualified points in time. T16:
00 means, therefore, that if the submit time 15:00 has been set, the job will start after
about an hour. If the submit time is later than 16:00, however, the job will wait until
the next day.

DYNAMIC CLAUSE The child dynamic clause defines whether the child is always
automatically submitted by the system when the parent is submitted as well.
Dynamic children are used by Running Jobs in the context of Trigger Definitions
and programmatic submits. To be able to submit a child, this child must be defined
as a dynamic child.

The table below shows the possible values in the dynamic clause and their mean-
ings.

dynamic clause | Description

static The child is automatically submitted with the parent.
dynamic The child is not automatically submitted with the par-
ent.

Milestones use different semantics for their children. Whenever a Scheduling En-
tity is dynamically submitted in a Master Run that is also a child of a milestone in
the same Master Run, the Submitted Scheduling Entity is bound to this milestone as
a child. This means that a milestone can only be final if its dependencies have been
fulfilled and all its children are final. In other words, a Milestone collects child in-
stances that are dynamically submitted by other Submitted Entities and waits until
these Submitted Entities have finished. For this to function correctly, a dependency
of the Submitted Scheduling Entity should be defined.

dependency mode The dependency mode defines which Required Submitted
Entities have to achieve a Final State before the dependent Submitted Entity can
exit the ‘Dependency Wait” System State.
The table below shows the possible Dependency Modes and their meanings.

dependency mode | Description

all The Submitted Entity exits the Dependency Wait
State after all the dependencies have been fulfilled.

any The Submitted Entity exits the Dependency Wait
State after at least one dependency has been fulfilled.

environment Each job has to define which environment is needed to execute
the job.
The job can only be executed by jobservers that fulfil all the Static Resource require-
ments listed in the Environment Definition.
The environment option only applies for jobs.

158

errlog The errlog option defines the file where error outputs (stderr) from the
process to be executed are written.
If the file name is relative, the file is created relative to the working directory of the
job.
This option is only valid for jobs.

footprint Footprints are sets of requirements for System Resources. If several
jobs are defined with similar requirements, this is made that much easier by using
footprints.
The job can only be executed by jobservers that fulfil all the Static Resource require-
ments listed in the Footprint Definition.
The footprint option only applies for jobs.

group The group option is used to set the owner group to the specified value.
The user must belong to this group unless he belongs to the ADMIN privileged
group. In this case, any group can be specified.

inherit grant The inherit grants clause allows you to define which privileges
are to be inherited through the hierarchy. If this clause is not specified, all privileges
are inherited by default.

kill program This option is used to create the possibility for prematurely ter-
minating running processes from within the Scheduling System.
Usually, the kill program contains the PID of the Running Job as a parameter (e.g.
kill -9 ${PID}).
For details about command line parsing, variants and parameter substitutions, re-
fer to the “run program” option on page 169.

logfile The logfile option defines the file where the standard output (STDOUT)
from the process to be executed is written.
If the file name is relative, the file is created relative to the working directory of the
job.
This option is only valid for jobs.

mapping The mapping option defines the Exit State Mapping that is used to
translate operating system Exit Codes of an executable program to an Exit State. If
ajob does not have a mapping, the default Exit State Mapping of the job’s Exit State
Profile is used.
For a detailed description of the Exit State Mapping, refer to the “create exit state
mapping” command on page 133.

159

master The master option defines whether this Scheduling Entity can be sub-
mitted in order to create a Master Run.

nicevalue The nicevalue option defines a correction that is used for the calcu-
lation of the priorities for the job and its children. Values between -100 and 100 are
permitted.

parameter The parameters section defines which parameters and input val-
ues are required by a job and how the job exchanges data with other jobs and the
scheduling system.
The parameters can be used in the specification of the Run program, Rerun pro-
gram, Kill program, working directory, log file and error log file, as well as in trig-
gers and Dependency Conditions.
A job can also query or set parameters at runtime. Variables that that have been
defined at runtime and not by the job definition are only visible to the job itself
and cannot be referenced. The same is also true, of course, for all variables that are
defined as local as well as for the system variables mentioned below.
Occasionally, however, it is necessary to make one or more of the (e.g.) system
variables known externally. This can be easily done by means of a small trick. If
the value of a parameter contains a character string in the form $something (i.e.
the characters $ followed by a name), this is interpreted as being the name of a
variable, and an attempt is made to resolve this variable in the scope of the object
that delivered the original value for the parameter.
This is how, for example, a job SYSTEM. A can define a constant called MYJOBNAME
with $JOBNAME as its content. If the constant MY JOBNAME is now addressed from
outside the system via a reference, the delivered result is the value SYSTEM. A.
A number of system variables are always defined for each job. These are set by the
system and can be read by the job.

These system variables are:

Name Description

JOBID Submitted entity id for the job

MASTERID Submitted entity id for the Master Job or Batch

KEY “Password” of the job for connecting to the schedul-
ing system as a job with “JOBID”

PID The operating system process id of the job. This pa-
rameter is only set for Kill programs.

LOGFILE Name of the log file (stdout)

ERRORLOG Name of the error log file (stderr)

Continued on next page

160

Continued from previous page

Name Description

SDMSHOST Host name of the scheduling server

SDMSPORT Listen port of the scheduling server

JOBNAME Name of the job

JOBTAG Child tag for the job is given if the job is being dy-
namically submitted

TRIGGERNAME Name of the trigger

TRIGGERTYPE Type of trigger = (JOB_DEFINITION or
NAMED_RESOURCE)

TRIGGERBASE Name of the triggering object that activates the trig-
ger

TRIGGERBASEID ID of the triggering Object Definition that activates
the trigger

TRIGGERBASEJOBID ID of the triggering object that activates the trigger

TRIGGERORIGIN Name of the triggering object that defines the trigger

TRIGGERORIGINID ID of the triggering Object Definition that defines the
trigger

TRIGGERORIGINJOBID ID of the triggering object that defines the trigger

TRIGGERREASON Name of the triggering object that directly or indi-
rectly activates the trigger

TRIGGERREASONID ID of the triggering Object Definition that directly or
indirectly activates the trigger

TRIGGERREASONJOBID ID of the triggering object that directly or indirectly
activates the trigger

TRIGGERSEQNO Number of times the trigger was activated

TRIGGEROLDSTATE The old state of the object caused by the trigger for
Resource Trigger

TRIGGERNEWSTATE (New) status of the object that causes the trigger to
be activated

SUBMITTIME Submit time

STARTTIME Start time

EXPRUNTIME Expected runtime

JOBSTATE Exit State of the job

MERGEDSTATE Merged Exit State of the job

PARENTID ID of the Parent Job (submission tree)

STATE Current state of the job (Running, Finished, etc.)

ISRESTARTABLE Is the job restartable? 1 = yes, 0 = no

SYNCTIME Time of the transition to Synchronize Wait

RESOURCETIME Time of the transition to Resource Wait

RUNNABLETIME Time of the transition to Runnable

FINISHTIME Finish time

SYSDATE Current date

Continued on next page

161

Continued from previous page

Name Description

SEID ID of the job definition

TRIGGERWARNING Text in the warning that activated this trigger

LAST_WARNING Text in the last issued warning. If no current warning
is present, this parameter is empty.

RERUNSEQ The number of reruns until now

SCOPENAME Name of the scope (jobserver) in which the job is run-

ning or last ran

Table 8.1.: List of System Variables
The TRIGGER... system variables are only populated if the job was submitted by a
trigger. For a more detailed description of the TRIGGER... system variables, refer
to the create trigger statement on page 197.
When a job is executed, the parameters used in commands, workdir and file speci-
fications are resolved conform to the sequence given below:

1. System variable
The job’s own address space
The address space of the job and submitting parents, from bottom to top

The address space of the jobserver executing the job

AN

The address space of the parent scopes of the jobserver executing the job, from
bottom to top

6. The job definition’s parent folders, from bottom to top

7. The parent folders of the parent jobs, from bottom to top

If the configuration parameter 'ParameterHandling” for the server has been set to
"strict’ (default), accessing variables that are not defined in the job definition will
trigger an error message unless it is a system variable.

If the contents of a variable includes a reference to a another parameter, this param-
eter is evaluated and replaced in the context of the defining job.

The different parameter types and their semantics are described below:

IMPORT Import-type parameters are used to hand over the data for a Job Scheduling
Environment to another job. This type is almost like the parameter type, although
import type parameters cannot be handed over like parameters when a job is sub-
mitted. Import-type parameters can have a default value, which is used if no value
can be acquired from the scheduling environment.

PARAMETER Parameter-type parameters are used to hand over the data from a Job
Scheduling Environment to another job. This type is almost like the import type,
but parameter-type parameters can be handed over as parameters when a job is

162

submitted. Parameter-type parameters can have a default value, which is used if
no value can be acquired from the scheduling environment.

REFERENCE Reference-type parameters are normally used to hand over results from
one job to another.

The fully qualified name of the job definition and the name of the referencing pa-
rameter are required to create a reference. The Submitted Entity with the closest
match to the job definition of the reference is sought to resolve the reference. If
this allocation cannot be made clearly enough, this triggers an error message. If
a matching Submitted Entity could not be found, the default value (if defined) is
returned.

REFERENCE CHILD Child Reference parameters are used to refer to the parameters
of direct or indirect children. This can be useful for reporting purposes, for exam-
ple. A Child Reference parameter is defined using a fully qualified job definition
name together with the name of the parameter to be qualified. When resolving the
parameter, the Submission Hierarchy is searched downwards instead of upwards
as is the case with Reference Parameters. The behaviour for the resolution is other-
wise identical to the resolution of Reference Parameters.

REFERENCE RESOURCE Resource Reference-type parameters are used to refer to pa-
rameters of allocated resources.

This parameter type requires the fully qualified name of a Named Resource to-
gether with an additional parameter name to specify the default reference. The
prerequisite for using a Resource Reference parameter is that the resource is also
requested. The value is determined in the context of the allocated resource.

RESULT Result-type parameters can acquire a value from the job (using the API).
As long as this value has not been set, the optional default value is returned when
the value is queried.

CONSTANT Constant-type parameters are parameters that have a value specified in
the definition. This value can therefore not change during runtime.

LOCAL These variables are only visible from the perspective of the defining job.

priority The priority of a job determines the order in which jobs are executed.
Values between 0 (high priority) and 100 (low priority) are permitted. The priority
option only applies for jobs.

profile The profile defines the Exit State Profile that describes the valid Exit
State of the Scheduling Entity.
For a detailed description of the Exit State Profile, refer to the “create exit state
profile” command on page 134.

required The required section defines the dependencies of other submitted en-
tities in a Master Run which must be fulfilled until the Submitted Entity is capable

163

of carrying on running.

Whether all the dependencies have to be fulfilled or just one of them is defined by
the "dependency’ mode’.

Dependencies are defined in a comma-separated list of fully qualified names of
Scheduling Entities (including folder path names).

Dependencies only apply between the Submitted Entities of the Master Run. Syn-
chronizing Resources have to be used to synchronise the Submitted Entities from
different Master Runs.

After the Submitted Entity instances of the Submitted Scheduling Entity hierarchy
have been created, the system searches for the dependencies as follows: Beginning
with the parent of the dependent Submitted Entity, all the children are searched
for an instance of the Required Scheduling Entity whereby the branch with the de-
pendent Submitted Entity is obviously ignored. If no instance is found, the search
continues in the Submit Hierarchy Parents until precisely one instance has been
found. If an instance can still not be found, the property "unresolved” defines how
this situation is handled by the system. If more than one Submitted Entity is found,
the submit fails with an “ambiguous dependency resolution” error.

During the execution of a Master Run, a Scheduling Entity can attain an "unreach-
able’ state because the dependencies can no longer be fulfilled. This can happen if a
Required Scheduling Entity reaches a Final State that is not entered in the list of re-
quired states for dependencies or by cancelling a Submitted Entity that is required
by another Submitted Entity. These two cases are handled differently.

If the unreachable situation is caused by a Submitted Entity that finishes with an
unsuitable Exit State, the system determines the Exit State Profile of the dependent
Submitted Entity and sets the Exit State to the state that is marked as being "un-
reachable’ in the profile.

If none of the Profile States is marked as an unreachable state or the unreachable
state was caused by a Submitted Entity being cancelled, the dependent Submitted
Entity is set to the unreachable state, which can only be resolved by an operator
ignoring the dependency or cancelling the dependent entity.

All the direct or indirect children of a job or batch inherit all the parent’s dependen-
cies. This means that no child of a job or batch can exit the dependency wait state
as long as the parent itself is in this state. Children of milestones do not inherit the
dependencies from their parent.

The properties of the dependency definitions are described below:

CONDITION It is possible to stipulate a condition for a dependency. The depen-
dency is only fulfilled if the evaluation of the condition returns the truth value
“true”. If no condition is specified, the condition is always deemed to have been
fulfilled.

DEPENDENCY NAME A name can be optionally specified for the dependency when
defining a function. Children (both direct and indirect) can refer to the name in
order to ignore this dependency.

164

MODE The mode property is only relevant if the required Scheduling Entity is a
job with children. In this case, the Dependency Mode defines the time when the
dependency is fulfilled.

The table below shows the possible values and their meanings.

dependency mode | Description

all_final The required job and all its children must have
reached a Final State.

job_final Only the required job itself has to reach a Final State,
the state of the children is irrelevant.

STATE The state property of a dependency defines a list of Final States that the
required Scheduling Entity can achieve to fulfil the dependency.

Without this option, the dependency is fulfilled if the required Scheduling Entity
reaches a Final State.

It is also possible to stipulate a condition for a state. If a condition has been spe-
cified, the dependency is only deemed to have been fulfilled if the condition is
fulfilled as well. The syntactic rules for specifying conditions are the same as those
that apply to triggers. For more details, refer to the create trigger statement on page
197. Several implicit definitions are also available as options:

¢ default — The dependency is fulfilled if the predecessor has reached one of
the states that are defined in its profile as being a default dependency.

¢ all reachable — The dependency is fulfilled if the predecessor has reached
one of the states that are not defined as being unreachable.

¢ reachable — The dependency is fulfilled if the predecessor has reached the
state defined as being unreachable.

UNRESOLVED The unresolved property specifies how the system should handle a
situation where no Submitted Entity instance could be found during a Submit Op-
eration for a required Scheduling Entity.

The possible behavioural patterns are described in the table below:

165

unresolved | Description

error The submit operation fails with an error message.
ignore The dependency is tacitly ignored.
suspend The dependency is ignored, but the dependent Sub-

mitted Entity is placed in a "suspended’ state and re-
quires a user action to continue.

defer This option promises that the predecessor will be dy-
namically submitted later.

defer ignore | This option expects that the predecessor will be dy-
namically submitted later. If this doesn’t happen, the
dependency will be ignored.

rerun program If a rerun program command line has been defined for a job,
this is executed instead of the run command line when the job is restarted after a
failure.
For details about command line parsing, variants and the substitution parameter,
refer to the “run program” option on page 169.

resource The resource section of a job definition defines resource requirements
in addition to those requirements indirectly defined by the environment and foot-
print options.
If the same Named Resource as in the footprint is required here, the requirement in
the Resource Section overwrites the requirement in the footprint.
Since environments only require Named Resources with the usage static and foot-
prints only require Named Resources with the usage system, the Resource Section
in a job definition is the only place where resource requirements for Named Re-
sources with the usage synchronizing can be defined.
Resource requirements are defined by the fully qualified path name to a Named
Resource defined with the following additional requirement options:

AMOUNT The amount option is only valid with requests for Named Resources of
the type System or Synchronizing. The amount in a Resource Request expresses
how many units of the Required Resource are allocated.

EXPIRED The expired option is only valid for Synchronizing Resources with a de-
tfined Resource State Profile. If the expired option is specified, the time to which
the Resource State of the resource has been set cannot be less recent than the time
given by the expire option. A negative Expire value means that a resource must be
at least as old as given here. The Resource State can only be set by the old resource
command (see page 89) or automatically when defining a Resource State Mapping
which converts the Exit State and Resource State into a new Resource State. Even
if, in such a case, the new Resource State is the same as the old Resource State, the
Resource State is considered to have been set.

166

LOCKMODE The lockmode option in a resource requirement is only valid for Syn-
chronizing Resources. Five possible lockmodes are defined:

Name Meaning

X Exclusive lock

S Shared lock

SX Shared exclusive lock
SC Shared compatible lock
N Nolock

The important aspect here is the compatibility matrix:

I x[s|sx[sc|N|
X [N|N|N|N]JY
s INJY[N]Y]|Y
sx ININ[Y[Y |Y
scIN|Y[Y]Y]Y
N [Y|[y[yY]|Yy]Y

The purpose of the exclusive lock is to have exclusive access to the resource to be
able to set the Resource State and possibly parameter values. A common example
of where the exclusive lock is used is when reloading a database table.

The purpose of the shared lock is to allow other users to use the resource in the
same way while preventing them from making any changes. The most frequent
scenario for using shared locks is for a large-scale ongoing reading of a database
table. Other read processes can simply be tolerated, but no write transactions are
allowed.

The purpose of the shared exclusive lock is to have a second shared lock which is
not compatible with the normal shared lock. If we use the normal use shared lock
for large read transactions, then we use the shared exclusive lock for small write
transactions. Small write transactions can easily run in parallel, but if they create a
large read transaction when doing so, they will almost certainly cause a “snapshot
too old” or other similar problems.

The purpose of the shared compatible lock is to have a shared lock that is compat-
ible with both the shared and exclusive locks. This lock type is intended for short
read transactions which do not conflict with small write transactions or large read
transactions. Small read transactions obviously don’t conflict with other small read
transactions. Running small read and large write transactions in parallel may cause
problems.

The purpose of the nolock is to ensure that the resource exists and that all the other
properties of the resource cover requirements. The resource is not locked and any-
thing can happen, including state changes.

167

STATE The state option is only valid for Synchronizing Resources with a Resource
State Profile. It is used to specify valid Resource States for this job. A resource can
only be allocated if it is in one of the required states.

STATE MAPPING The state mapping option is only valid for Synchronizing Resources
that specify a Resource State Profile and are requested with an “exclusive” lock-

mode. The mapping defines a function that maps the combinations of Exit States

and Resource States in a new Resource State. For more detailed information about

resource state mappings, refer to the create resource state mapping statement on

page 188.

KEEP The keep option in a Resource Request defines the time when the resource is
released. The keep option is valid for both System and Synchronizing Resources.
There are three possible values. Their meanings are explained in the table below:

Value Meaning

nokeep The resource is released at the end of the job. This is
the default behaviour.

keep The resource is released as soon as the job has reached
the Final State.

keep final | The resource is released when the job and all its chil-
dren are final.

STICKY The sticky option is only valid for Synchronizing Resources. If sticky is
specified, the resource is allocated by the master batch (this is called a MASTER_RE-
SERVATION) for as long as other jobs in the batch that require the sticky resource.
The amount and lockmode for the Master Reservation are derived from all the
sticky requirements of all the children. The amount is the maximum needed by
any job.

The lockmode is exclusive as long as at least two jobs exist which request the re-
source with a lockmode other than nolock. An exception is the combination of
Shared and Shared Compatible lock requests. This combination results in lock-
mode Shared.

An attempt is made to fulfil all the requirements from the Master Reservation.

A name can be optionally assigned for the sticky allocation. As a basic principle,
only those requests with the same name are taken into account for the previously
described method. That’s why a master batch can have several MASTER_RESER-
VATIONS at the same time. Several separate critical regions can be realised within
a sequence with the aid of the names.

A parent job or batch can be specified in addition to, or even instead of, the name.
The corresponding instance of the parent is then determined at runtime from the
submission hierarchy. The sticky request is only valid from the parent downwards.
In principle, this can be interpreted as if the parent’s Id represents a part of the
name of the sticky request. This mechanism allows separate critical regions to be
easily implemented in dynamically submitted sub-workflows.

168

runtime The runtime option is used to define the estimated runtime of a job.
This time can be valuated when activating triggers.

run program The run program command line is mandatory for jobs because it
specifies the command that is to be executed for this job.
The command line is separated by whitespace characters in a command and a list
of arguments. The first element in the command line is regarded as the name of
the executable program that is to be run, and the rest are the parameters for the
program.
Whether the jobserver uses the PATH environment variable when searching for the
executable file is a characteristic of the jobserver.
System and job parameters can be addressed with $ Notation.
Quoting can be used to forward whitespace characters and $ characters as part of
the command line. The quoting complies with Unix Bourne shell rules. This means
that double quotes prevent whitespace characters from being interpreted as sepa-
rators. Single quotes also prevent variables from being resolved. Backticks can be
used for quoting. The parts of the command line that have been quoted in back-
ticks are regarded as having been single quoted, but the backticks remain a part of
the argument. Other quotes are removed.

Example:

The run command line’sh —-c ''example.sh ${JOBID} \SHOME'' '$SSHELL'’
will execute the program “sh’ with the parameters '~c’, ‘example.sh 4711 SHOME’
and '$SHELL’ (assuming that the Submitted Entity has the ID 4711).

If the executable program (the first element of the command line) is a valid integer,
the command line is not run by the jobserver. Instead, the job is treated as if it
had completed itself with the integer as the Exit Code. Dummy jobs with "true’
or 'false” as the program can now be implemented as ‘0" instead of "true” or "1’
instead of ‘false” and are therefore processed much more efficiently and quickly by
the system.

Should it really be necessary to run an executable with a number as the name, this
can be achieved by using a path prefix ("./42" instead of "42").

suspend The suspend option defines whether a Submitted Entity is suspended
at the submit time.
If the suspend option is specified, the resume clause can be optionally used. This
can then trigger an automatic resume at or after the specified time.
If the resume time is specified by the incomplete date format (see also page 20), the
resume takes place at the first suitable time after the submit time.
If a submit takes place at 16:00, for example, and T17:30 is entered as the resume
time, the resume will take place on the same day at 17:30. But if T15:55 is specified
as the resume time, the job will have to wait until the next day at 15:55.

169

Output

timeout The timeout clause of a job definition defines the maximum time for
which the job waits until its resource requirements are fulfilled.
When the timeout condition is reached, the job gets the Exit State specified in the
timeout clause. This Exit State must be an element of the Exit State Profile.

If no timeout option is given, the job will wait until all the requirements have been
fulfilled.

type The type option specifies the Scheduling Entity type that is being created
or modified.

workdir The workdir of a Scheduling Entity-type job defines the directory where
the run, rerun or kill program is executed.

Output

This statement returns a confirmation of a successful operation.

170

create named resource

Purpose

The purpose of the create named resource statement is to define a class of resources.

Syntax

The syntax for the create named resource statement is

create [or alter | named resource identifier {. identifier}
with WITHITEM {, WITHITEM}

WITHITEM:

factor = float

group = groupname | cascade |
inherit grant = none
inherit grant = (PRIVILEGE {, PRIVILEGE})

parameter = none

parameter = (PARAMETER {, PARAMETER})
state profile = < none | rspname >
usage = RESOURCE_USAGE

PRIVILEGE:

approve
cancel

clear warning
clone

create content

drop

edit [parameter]
enable

execute

ignore resource
ignore dependency
kill

monitor

operate

priority

rerun

resource

set job status

171

Purpose

Syntax

Description

| setstate
| submit

| suspend
| use

| view

PARAMETER:
parametername constant = string
| parametername local constant | = string |
| parametername parameter [= string |

RESOURCE_USAGE:
category

pool

static
synchronizing
system

Description

The create named resource statement is used to define classes of resources. These
classes define the name, the usage type and optionally the utilised Resource State
Profile as well as the parameters.

group The group option is used to set the owner group to the specified value.
The user must belong to this group unless he belongs to the ADMIN privileged
group. In this case, any group can be specified.

parameter It may be useful to use its parameters in conjunction with allocat-
ing resources. For example, a resource like RESOURCE.TEMP_SPACE could have a
parameter called LOCATION. This would allow a job to use a resource and allocate
temporary storage space somewhere dependent upon the current instance of the
Named Resource.
There are three types of parameters in a resource context:

Typ Meaning

constant This parameter type defines the value that is constant for
all resources.

Continues on next page

172

Continued from previous page

Type

Meaning

local constant

parameter

This parameter type defines a non-variable parameter
whose value can deviate between instances of the same
Named Resource.

The value of such a parameter can be changed by jobs that
have exclusively locked this resource.

Table 8.2.: Named Resource parameter types

state profile A State Resource Profile can be specified in the case of Synchro-
nizing Resources. This allows jobs to request the resource in a particular state.
Resource State changes can be used to activate triggers.

usage The usage of the Named Resource can be one of the following;:

Usage

Meaning

category

static

system

synchronizing

Categories behave like folders and can be used to arrange
the Named Resources in a clearly organised hierarchy.
Static resources are resources which, if requested, must
be present in the scope in which the job is running but
which cannot be used up. Possible examples of Static Re-
sources are a particular operating system, shared libraries
for DBMS access operations or the presence of a C compiler.
System Resources are resources that can be counted. Pos-
sible examples are the number of processes, the capacity of
the temporary memory or the availability of (a number of)
tape drives.

Synchronizing Resources are the most complex resources
and are used to synchronise multiple access operations.
One possible example is a database table. Multiple access
operations may be tolerated or not depending on the type
of access (large read transactions, large write transactions,
multiple small write transactions, etc.).

Continues on next page

173

Output

Continued from previous page

Usage Meaning

pool pool-type Named Resources are used to create so-called Re-
source Pools. These pools allow the distribution of amounts
for System Resources to be regulated centrally and flexibly.

Table 8.3.: Named Resource usage

factor When creating a Named Resource, the factor by which the specified
amounts in a resource request are multiplied can be specified. The default fac-
tor is 1. This factor can be overwritten for each instance of this Named Resource
(i.e. for each resource).

inherit grant The inherit grants clause allows you to define which privileges
are to be inherited through the hierarchy. If this clause is not specified, all privileges
are inherited by default.

Output

This statement returns a confirmation of a successful operation.

174

create nice profile

Purpose

The purpose of the create nice profile statement is to create a nice profile. Purpose
Syntax

The syntax for the create nice profile statement is Syntax

create [or alter | nice profile profilename [with NPWITHITEM {,
NPWITHITEM]]

NPWITHITEM:
< active | inactive >
| profile = none
| profile = (NPENTRY {, NPENTRY})

NPENTRY:
NPENTRYITEM { NPENTRYITEM}

NPENTRYITEM:
< active | inactive >
| folder folderpath
| nosuspend
| renice = signed_integer
| suspend | restrict |

Description

The create nice profile statement is used to define a Nice Profiles. A Nice Profile Description
defines a ruleset to prioritise, suspend or resume already submitted jobs as well as
jobs that will be submitted in the future.
The entries in a Nice Profile are evaluated in sequence. Subsequent entries override
the rules of previous entries as far as they refer to the same objects.
If more than one Nice Profile is activated, the rules are logically appended in se-
quance of activation.
An entry consists of a Folderpath and the action to be taken (renice, suspend, re-
sume). If a folder is specified, the rule applies to all job definitions in or below that
folder.

175

The basic idea of Nice Profiles is to have a tool to assign all jobs and waiting jobs
an appropriate priority respectively suspend state in case of exceptional circum-
stances, like for instance an unplanned downtime.

Output

Output This statement returns a confirmation of a successful operation.

176

create object monitor

Purpose

The purpose of the create object monitor statement is to create a monitor for a
number of objects of a specific type.

Syntax

The syntax for the create object monitor statement is

create [or alter | object monitor objecttypename watch type
watchtypename
with WITHITEM {, WITHITEM}

WITHITEM:
delete < none | after period >
| event delete < none | after period >
| parameter = (PARAMETERSPEC {, PARAMETERSPEC})
| recreate = < create | none | change >
| watcher = < none | folderpath >
| group = groupname

PARAMETERSPEC:
parametername = < string | default >

Description

The create object statement is used to define an amount of monitored objects.
What this amount looks like is determined by the configuration parameters.
Triggers can then be defined for the Object Monitor which are able to react to a
create, change and/or delete event of an instance (object from the defined amount).
The watcher option defines which job or batch gathers information
about the instances that are to be monitored. Which information is to be gathered
is defined by the specified Watch Type.

The Object Monitor retains the information about deleted instances indefinitely un-
less the delete option has been specified. In this case, the information about the
deleted instance is removed at the earliest after the specified period.

Since the information about deleted instances is kept for some time, it is possible to
ascertain whether an instance reappears within this time. The recreate option then
determines the response to this event. It can be ignored (none) or it can be valuated
as a new creation (create) or a change (change).

177

Purpose

Syntax

Description

Output

Events and instances are periodically removed by the GarbageCollection thread.
Obsolete objects are also removed when the alter object monitor statement is exe-
cuted.

When an event occurs for which a trigger has been defined, the trigger is activated
and starts a job or batch. This activation of the trigger is saved as an event so that
it is later evident when which events have been handled with the aid of which job.
This logging is also retained for an indefinite time. If the event delete option is
specified, all those events whose associated job or batch have been FINAL or CAN-
CELLED since the beginning of the period are removed after the defined period.
Instances can only be deleted if no events are present (any more).

An Object Monitor has an owner set using the group option. If the group option is
not initially specified, the default group of the user is used.

Output

This statement returns a confirmation of a successful operation.

178

create pool

Purpose

The purpose of the create pool statement is to create an object which manages the Purpose
amounts of a set of resources.

Syntax

The syntax for the create pool statement is Syntax

create [or alter | pool identifier {. identifier} in serverpath
with CPL_WITHITEM {, CPL_WITHITEM}

CPL_WITHITEM:
amount = integer

| base multiplier = integer

| cycle = < none | integer >

| resource = none

| resource = (CPL_RESOURCE {, CPL_RESOURCE})

| tag= < none | string >

| trace base = < none | integer >

| trace interval = < none | integer >

| group = groupname

CPL_RESOURCE:
CPL_RES_ITEM { CPL_RES_ITEM}

CPL_RES_ITEM:
< managed | not managed >
| resource identifier {. identifier} in folderpath
| freepct = integer
| maxpct = integer
| minpct = integer
| nominalpct = integer
| pool identifier {. identifier} in serverpath
| resource identifier {. identifier} in serverpath

Description

The create pool statement is used for creating Resource Pools. A Resource Poolis Description
a quantity of System Resources (or Resource Pools) which together have a centrally

179

managed amount. This amount is distributed conformant to the rules defined in
the Resource Pool regarding the participating resources and pools. In the case of
Resource Pools, the amount that is made available is distributed in turn among the
resources belonging to the pool.

This distribution essentially takes place in two stages. So-called Target Amounts
are periodically defined by an independent thread for all the resources and pools
of a pool. These Target Amounts are regarded as aspired values. If a resource
has a larger amount than its Target Amount, it will match its amount to the Target
Amount for releases as quickly as possible. Any resource requirements that cannot
fulfil a resource from their amount will request more resources from the pool. These
requests are honoured provided that a sufficient amount is available.

If the Target Amounts are reached and some amounts are still available, the re-
sources are able to request further amounts in excess of their Target Amounts (but
only up to the maximum amount defined in the pool).

Determining the Target Amounts The Target Amounts are determined for
each resource by four parameters.
The most important of these is the value nominalpct. This value expresses the
percentage share of the amount of the pool to which the resource (or pool) is in any
case entitled. Since the sum of these values over the entire pool can never exceed
100%, it is guaranteed that the resource will always be accorded its nominal share
even under a heavy traffic load.
The second most important parameter is nominalpct. This parameter expresses
what amount the resource would like to have freely available as an allocation lee-
way. If it is established that some Target Amounts are still available, all those re-
sources whose Free Amount is less than freepct will be allocated further amounts.
With this allocation, preference is given to all those resources that have an amount
smaller than the nominal amount.
The third value, minpct, states the minimum amount (in percent) a resource has.
The amount never falls short of this value (apart from rounding differences).
The last value, maxpct, states the maximum amount (in percent) a resource has.
The amount never exceeds this value (apart from rounding differences).

amount The stated amount defines the total amount that can be allocated. If
this is not specified, the amount is set to zero (0).

cycle The value for cycle defines the intervals at which the Target Amounts are
to be determined again. This value is given in seconds.
The higher the value, the more stable will be the distribution of the amounts among
the resources. Temporarily high and low loads will have no (or only a slight) impact
on the distribution. However, the system will obviously only respond slowly to a
load displacement. However, the general overhead is low.

180

If the value is small, the system will react “nervously” to temporary peak (and
extremely low) loads. The overhead in the Resource Scheduling will then be corre-
spondingly high. On the other hand, a quick adjustment to accommodate funda-
mental load displacements is achieved.

If this value is not specified, a default value of 600s is used.

group The group option is used to set the owner group to the specified value.
The user must belong to this group unless he belongs to the ADMIN privileged
group. In this case, any group can be specified.

resource The resource clause is used to determine which resources participate
in the pool and how the amounts are distributed among the given resources.
It is necessary to define whether the specified resource is managed or not. If it is not
managed, it is not served from the pool. It may be practicable to name resources
that are initially “not managed” anyway because distributions other than those
specified in the pool definition can be created which take this resource into account.
If a resource is not managed, all the other parameters are set to zero (0) regardless
of whether the parameters have been specified in the statement or not.
If a resource is managed, all the other parameters have to be specified without fail.
The other parameters nominalpct, freepct, minpct
and maxpct are subject to the following integrity conditions:

* The sum of the nominalpct over all the (managed) resources must be less
than or equal to 100

¢ maxpct must be less than or equal to 100
* minpct must be less than or equal to nominalpct.

* nominalpct must be less than or equal to maxpct.

trace base Tracing is deactivated if the trace base is none. Otherwise it is the
basis for the valuation period.

trace interval The trace interval is the minimum time in seconds between when
Trace Records are written. Tracing is deactivated if the trace interval is none.

Output

This statement returns a confirmation of a successful operation.

181

Output

Purpose

Syntax

Description

create resource

Purpose

The purpose of the create resource statement is to create an instance of a named
resource within a scope, folder or job definition.

Syntax

The syntax for the create resource statement is

create [or alter | resource identifier {. identifier} in < serverpath |
folderpath > [with WITHITEM {, WITHITEM]]

WITHITEM:
amount = < infinite | integer >

| < online | offline >

| base multiplier = integer

| factor = < none | float >

| parameter = none

| parameter = (PARAMETER {, PARAMETER})
| requestable amount = < infinite | integer >
|
|
|
|

EE

state = statename
tag = < none | string >
touch [= datetime |

trace base =
< none | integer >
| trace interval =

< none | integer >
| group = groupname

PARAMETER:
parametername = < string | default >

Description

The create resource statement is used to instantiate Named Resources within scopes,
folders or job definitions. In the latter case, only a template is created which is ma-
terialised as soon as the job is submitted and automatically destroyed as soon as
the Master Run is Final or Cancelled.

If the or alter option is specified, an existing resource is changed; otherwise, it is
considered to be an error if the resource already exists.

182

amount The amount clause defines the Available Amount for this resource.
The amount option is not specified in the case of static resources.

base multiplier The base multiplier is only relevant if the Resource Tracing is
being used. The base multiplier determines the multiplication factor for trace ba