
independIT Integrative Technologies GmbH
Bergstraße 6
D–86529 Schrobenhausen

BICsuite!focus

Workflow Parallelisation using the
BICsuite Dynamic Submit Function

Dieter Stubler Ronald Jeninga

November 25, 2016

Copyright © 2016 independIT GmbH

Legal notice

This work is copyright protected

Copyright © 2016 independIT Integrative Technologies GmbH
All rights reserved. No part of this work may be reproduced or transmitted
in any form or by any means, electronically or mechanically, including photo-
copying, recording, or by any information storage or retrieval system, without
the prior written permission of the copyright owner.

Workflow Parallelisation using the BICsuite Dynamic
Submit Function

Introduction

Processing large volumes of data is a typical feature of data warehouse environ-
ments. Depending on the available hardware resources, sooner or later there comes
a point where a processing step can no longer be reproduced by being run on a pro-
cessor or as a process. There are different reasons for this:

• Time-related requirements require the use of multiple processors.

• System resources (memory, disk space, temporary tablespace, rollback seg-
ments, . . .) are limited in their availability.

• Any errors that occur require frequent repetitions of the processing steps.

Parallelisation with RDBMS Parallel Processing

Contemporary database systems allow parallel query processing. This feature al-
lows queries, and in some cases manipulations of large volumes of data, to be par-
allelised internally in the database and run on multiple processors.

The advantages of this solution are:

• No or minimal development requirements.

• Low overheads due to the parallelisation.

The disadvantages, however, are:

• Controlling the degree of parallelism is only restricted or is time-consuming.

• Adapting the number of parallel sub-processes to be executed at any one time
during runtime is generally not possible.

• When an error occurs, the work that has already been done is lost completely.

• The requisite database system resources (temporary tablespace, rollback seg-
ments, . . .) have to be sufficiently available for the entire operation.

• In systems where control over the resources is crucial, processes that are par-
allelised internally in a database are problematic because their resource con-
sumption can often not be determined.

• The impact of parallelisation on the rest of the system is difficult to predict or
plan.

1

RDBMS Parallel Processing is therefore primarily suitable for accelerating opera-
tions through the use of multiple processors for one processing step. If system
resources are not
bountifully available, the disadvantages will become even more tangible. This ap-
plies especially, despite parallelisation, to long-running processing steps.

Parallelisation at application level

As an alternative to RDBMS internal parallelisation, it is usually possible to break
down a processing step on the application side into parallel executable sub-tasks
and then run them concurrently.

The advantages of this solution are:

• Full control of the degree of parallelism is possible.

• The number of active parallel processes at any one time can be dynamically
controlled.

• Errors in one parallel process do not invalidate the work of other, successfully
completed parallel processes. This diminishes the effects of errors on the total
runtime.

• System resources only have to be made available for the concurrently running
parallel processes.

• The resource consumption can be better planned and the impact on the rest
of the system can be dynamically influenced.

The disadvantages, however, are:

• Implementation is extremely complex without the support of a suitable schedul-
ing system.

• The overheads for combining the results are usually higher than is the case
with RDBMS internal parallelisation.

This comparison between the advantages and disadvantages of application-based
parallelisation clearly demonstrates that, especially where extremely complex and
long-running processing procedures in environments with a limited availability of
resources are concerned, application-based parallelisation is a much more viable
solution than RDBMS internal parallelisation. Processing scenarios with the afore-
mentioned characteristics are commonplace in data warehouse environments.

2

Implementation

The implementation of application-based parallelisation always requires the fol-
lowing 3 (4) sub-tasks:

1. Decomposition of a processing step into parallel executable sub-processes.

2. Realisation of the sub-process.

3. Control over the parallel execution of the sub-processes.

4. Optionally, combining of the part results into one overall result.

Example:

In a data warehouse there is an SQL script which accesses an extremely large, par-
titioned database table to create an aggregation and then saves it in a results table.
Since the processing operation meanwhile surpasses the available TEMP capacity
of the database, it needs to be parallelised.
Realising the first step essentially involves creating a list of the partitions and then
triggering a sub-process for each of these partitions.
For the second step we use the original SQL script. We modify this so that the
aggregation does not take place using the entire table, but just one partition that is
handed over as a parameter. We then save the result in an intermediate aggregate.
After all the parallel sub-processes have been completed, for the fourth step the
intermediate aggregate has to be aggregated again and written to the results table.
The original SQL script provides a good template for this task as well.
These realisation measures can usually be implemented in just a few hours.
The problem child in the realisation is step 3.
To benefit from all the advantages of application-based parallelisation, it is nec-
essary to implement a control mechanism which provides at least the following
functions:

• Execution and error validation of the parallel sub-processes.

• Ability to control the number of concurrently running parallel processes (at
runtime).

• Monitoring and restarting of sub-processes after an error.

If a custom-built solution has to be developed here (scripting, . . .), this will require
considerable know-how and it will be scarcely possible to achieve an efficient, sta-
ble and also maintainable solution at a justifiable cost. If the parallel sub-processes
cannot be integrated in the deployed scheduling system, they cannot be effectively
controlled and steered during operation of the overall data warehouse system.
The BICsuite Scheduling System, on the other hand, has all the features required to
completely cover step 3 of the implementation (see above). This means that no time

3

and costs whatsoever have to be invested in the development in order to realise
even the most complicated task in this context. The greatest obstacle to process
parallelisation at application level is thus eliminated.

Implementation in the BICsuite Scheduling System with Dynamic
Submits

The BICsuite Scheduling System allows child jobs that are hierarchically subordi-
nate to a parent job to be created using different parameters via the API BICsuite.
These are then visible in the scheduling system just like all the other jobs in a work-
flow. All the functions (monitoring, operation, resource management, . . .) in the
BICsuite Scheduling System are unreservedly available for these dynamically cre-
ated job instances as well.

To go back to the example:

Figure 1 shows the definition of the parallelised workflow in the BICsuite Schedul-
ing System.

Figure 1: Definition of the aggregation in the BICsuite Scheduling System

Starting the AGGREGATE batch with a submit creates the two static child jobs SUB-
MIT_PARTITIONS and AGGREGATE_TOTAL and the SUBMIT_PARTITIONS job
can be started. Due to its dependency (arrow in the screenshot) on SUBMIT_PARTITIONS,
AGGREGATE_TOTAL is only run after the SUBMIT_PARTITIONS job (including
all its child jobs) has been completed.
The underlying program for the SUBMIT_PARTITIONS job is the realisation of step
1 of our sub-tasks for the parallelisation. It identifies the partitions in the database
table and creates a child job for each partition via the BICsuite API (e.g.: command
line command ’submit’).
The command to be executed for the SUBMIT_PARTITIONS job can be defined in
a UNIX environment as follows:

sh -c "for P in P1 P2 P3 P4 P5 P6 P7
do

4

submit --host $SDMSHOST --port $SDMSPORT --jid $JOBID \\
--key $KEY --job PARTITION --tag \$P PARTITION \$P

if [\$? != 0]; then exit 1; fi
done"

A running AGGREGATE batch is displayed in the BICsuite monitoring module as
shown in Figure 2.

Figure 2: Monitoring window showing an active aggregation

Every single one of the AGGREGATE_PARTITION jobs can now be monitored via
the BICsuite Scheduling System and individually repeated (rerun) in the event of
an error.
In just a few steps, by defining a resource and the requirements for this resource the
AGGREGATE_PARTITION job can be used to control how many of the AGGRE-
GATE_PARTITION jobs are to be run by the system at any one time. This number
can also be changed during runtime. Figure 2 shows the workflow set to run a
maximum of three parallel AGGREGATE_PARTITION jobs. In addition, the AG-
GREGATE_PARTITION jobs can be integrated into the resource management of
the remaining data warehouse operation by means of requirements for resources
for mapping the available system resources.

Closing remarks

With its Dynamic Submit functionality, the BICsuite Scheduling System allows a
fast, cost-effective, stable and maintainable implementation of application-based
parallelisation.
The parallel sub-processes are integrated into the workflow and are thus visualised
in the scheduling system, ensuring an overview and control over each of these sub-
processes at all times.

5

